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Abstract 

Fuzzy Logic, a neural network and an expert system are combined to build a hybrid 

diagnosis system.  With this system we introduce a new approach to the acquisition of 

knowledge bases. Our system consists of a fuzzy expert system with a dual source 

knowledge base. Two sets of rules are acquired, inductively from given examples and 

deductively formulated by a physician. A fuzzy neural network serves to learn from 

sample data and allows to extract fuzzy rules for the knowledge base. The diagnosis 

of electroencephalograms by interpretation of graphoelements serves as visualization 

for our approach. Preliminary results demonstrate the promising possibilities offered 

by our method. 

 

1 Introduction 

Repetitively applied cognitive tasks of recognizing and evaluating certain phenomena, 

called diagnostic tasks, are among the main applications for Artificial Intelligence 

(AI). As there exists a vast variety of such diagnostic tasks in medicine, it has always 

belonged to the spectrum of potential users of Artificial Intelligence. Most popular 

among AI methods in medicine are knowledge based systems [Buchanan and 

Shortliffe, 1985], modeling the diagnostic behaviour of experts. A variety of such 

expert systems is being used in everyday practice of physicians since Shortliffe 

introduced MYCIN Shortliffe, 1976], an expert system designed to diagnose 

infections of the human blood. One of the greatest difficulties in designing a 

convenient expert system is acquiring the knowledge base. We introduce a new 

approach where a dual source knowledge base is generated by deductive 

and inductive learning. Neural networks have also made their way into diagnosis. 

They are able to learn relationships between data sets by simply having sample data 

represented to their input and output layers. In the field of pattern recognition in 

medical data, neural network based approaches have led to quite remarkable results, 

for exam- *also affiliated with Mainz University Clinic, Department of Neurology, 
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Reisingerweg, D-55101 Mainz, Germany ple in processing MRI pictures [Hall et a/., 

1992] or EEG traces [Mamelak et a/., 1991; Jando et a/., 1993]. For the task of  

acquiring knowledge bases, which is a part of our hybrid approach, neural networks 

have been proposed recently [Thrun and Mitchell, 1993]. Fuzzy logic [Zadeh, 1965] 

also makes its appearance in medicine, dealing with the uncertainty of verbal 

expressions [Kuncheva, 1991; Nishimura et a/., 199l]. Terms like many, few or 

probably are hard to model with conventional logic. The linguistic variables offered 

by fuzzy representations allow pseudo-verbal descriptions close to natural human 

expressions. All of the above methods bear advantages as well as disadvantages as 

will be seen in Section 2. Combining these methods not only sums up the advantages 

but also avoids some of the disadvantages. Up to now, only few approaches in  

medical diagnosis combine multiple methods of Artificial Intelligence, although 

good results have been made by these means, modeling a physician's decision process 

[Kuncheva et a/., 1993; Orsier et a/., 1994]. Here, we will describe a hybrid system 

consisting of a fuzzy expert system for rule-based reasoning with a fuzzy neural 

network for acquiring case-based knowledge in addition to the explanation-based 

knowledge from an expert (Section 3). The automatic acquisition of rules by 

the network is implemented in parallel to the classical formulation of expert rules. 

Two modes of processing result for the hybrid system: A learning mode to feed 

the knowledge base and an execution mode diagnosing patient data. All components 

of the system are based on a fuzzy representation, serving as an interface notation 

between the components and making a fuzzification of input data necessary. 

In Subsection 3.2, a very effective mapping technique will be introduced,  

transforming fuzzy variables into a neural representation. To visualize the processing 

of real medical data in such a system, we chose the diagnosis of  

electroencephalograms (EEGs) for demonstration. This type of medical data,  

measured and stored electronically, is very well suited for automatic processing since 

it need not be converted to an electronic representation any more. Other types of data 

will also be appropriate for diagnosis in our system. We will describe our sytem apart 

from the application as far as possible and propose related topics and Mc Clelland, 

1986]). Therefore, to represent multiple phenomena eight neurons would be required 

for each phenomenon. Since the number of features contained in every time-slice 

varies through the EEG (not every sample is deranged by an  artifact) a representation 

is needed which is capable of coding multiple phenomena in a constant number of 
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neurons. We have developed a mapping scheme that brings two fuzzy variables into a 

network suited representation by calculating the cross product, which is described in 

detail in [Herrmann, 1995a]. The two four-term fuzzy variables result in 16 neurons 

NfrequencyXamplitude (see figure 2). Each neuron represents the conjunction of two 

fuzzy terms of each variable, thus overcoming the binding problem. The activation 

value of a neuron is calculated via the algebraic product of the two represented 

membership functions:  

 

The sum of activation, resulting from one spectral phenomenon always sums up to 1 

for sake of reinterpretability of the rules learned by the network.  

3.3 Fuzzy Neural Network 

The fuzzy features, presented to the neural network by the two-dimensional mapping 

method, are then trained to be detected by the net. In order to extract the acquired 

knowledge, a fuzzy-neural network, called FuNe [Halgamuge and Glesner, 1993; 

Halgamuge et a/., 1993], is used in our three layer network. The special multilayer 

perceptron architecture is trained with a gradient descent algorithm. There exist three 

types of neurons in the middle layer grouped together topographically. One group of 

neurons can perform only the or function of multiple inputs while another group only 

performs the and function. As there may as well be unary rules, composed of simple 

one-term-premises, there is a third group of neurons having single inputs and single 

outputs. The output neuron simply acts as an or function of all middle neurons. In the 

initial state the fully interconnected network represents all possible logical functions 

of or premises, and premises, and the 16 unary premises. During the learning process 

all connections below a certain threshold are eliminated. This pruning method has 

been proposed by Le Cun in 1990 [LeCun et a/., 1990] in order to increase learning 

speed—but, it is also useful for limiting the number of resulting rules. This is of 

special interest to us, because we will extract exactly these rules after the training and 

want to avoid rules with negligible rule strength. A net trained to detect bulbus 

artifacts is shown in its final state in Figure 2. As an example, the pattern at the input 

neurons represents a bulbus artifact (ba) in a simplified manner 2. The delta frequency 

component is high while all other frequency components are low. The artifact is 

detected in the output neuron, shown by its activation of  1. Some of the inputs no 
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longer contribute to the detection task at all, since their lowweight connections have 

been pruned. 

For the sake of simplicity we used only values 0 and 1, although they will not occur in 

reality.  

 

 

3.4 Fuzzy Expert System 

The heart of our hybrid system is a fuzzy expert system, called FuzzyCLIPS 

[Knowledge Systems Laboratory, 1994], derived from CLIPS [Artificial Intelligence 
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Section, 1993]. This expert system consists mainly of three components (see Figure 1, 

'Fuzzy expert system'), the dual source knowledge base containing the combined 

rule sets from inductive and deductive learning, the user knowledge base where the 

actual phenomena of a patient are entered, and the inference mechanism concluding a 

diagnosis from the comparison of the knowledge base. When acquiring rules for the 

knowledge base of an expert system two major learning paradigms apply: deductive 

learning and inductive learning. Deductive learning mostly is carried out by 

explanation-based learning [Minton et a/., 1990], meaning that the system is tought 

which rules lead to the desired decision capability. Inductive learning is applied when 

this knowledge is incomplete but examples may serve as a teacher for machine 

learning techniques [Michalski, 1983]. Our knowledge base consists of two seperately 

acquired sets of rules. The first one is acquired deductively from an HERRMANN 

497 expert by explanation-based learning. The second one is acquired inductively by 

machine learning in a neural network. The resulting dual source knowledge base 

integrates two autonomous rule sets. They might contain rules that are equal in 

premises and conclusion but different in the degree of certainty, which results in 

contradiction in the worst case. Like Holland proposed in 1986 [Holland, 1986], we 

do allow these contradictory rules, postulating it as a natural feature of decision 

processes and thus being well suited to model those. The following example might 

shed some light upon this matter: Wife rule: IF evening THEN go home Boss rule: IF 

evening THEN stay in office If one equally obeys to wife and boss (equal rule 

strengths) one certainly needs a third rule to make a decision, like IJCAI rule: IF 

deadline close THEN stay in office which contributes to one of the former  

conclusions. The same is supposed for our dual source knowledge base. There may 

very well be phenomena that exist in sample data but are described differently in the 

expert rules. In this case the resulting uncertainty has to be solved by different rule 

strengths or a further rule, manifesting one of the possible conclusions. Besides an 

explanation component it is also important for this medical application that a don't 

know conclusion exists, telling the user if abnormal phenomena were detected 

but could not be i nterpreted.  

 

4 Preliminary Results 

When talking about results in medical diagnosis, we would first like to mention one 

major point in where to put the main focus. Other than in common detection 
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tasks it is not sufficient to simply watch the overall performance of the system in 

means of average error, like it would be appropriate for character recognition, 

for instance. The diagnosis performance must be split into the missing of phenomena, 

called false negatives, and the accidental finding of phenomena which are not 

actually present, called false positives. With these two measures it is possible to 

decide whether the two can be kept apart or will be overlapping. For certain diagnosis 

types, it is very important to have absolutely no false positives whereas a few false 

negatives were still acceptable, like in diagnosing cerebral death. Vice versa, in 

other cases it is important to have no false negatives, like in diagnosing epileptic 

seizures for emergency purposes. (Both examples were chosen from the class of 

EEG diagnosis tasks.)  

 

Figure 3 shows a typical diagram illustrating false positives (dashed line) versus false 

negatives (solid line) as a function of the threshold e (FP/FN-diagram) for the 

detection of bulbus artifacts (BAs). Since we apply fuzzy logic, we get fuzzy results 

rather than discrete ones. (We do not use standard defuzzification.) The example 

shows the diagnosis of bulbus artifacts in EEGs. The decision of the system, whether 

it is a bulbus artifact or not, is represented by an analog value in the range from 0 to 1. 

For a binary decision a threshold is needed, above which a BA is assumed. In Figure 

3 there is a wide gap between Figure 4: False positive BAs (dashed) and false 

negative 

BAs (solid) in a patient record with additional electrode artifacts The example of 

Figure 4 nicely demonstrates the degree of accuracy of the system. 
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The diagram shows only a narrow gap for the threshold, proposing possible misses in 

future data. The system can correctly diagnose all existing bulbus artifacts in the 

patient record with ease, shown in the narrow band of false negatives (rightmost peak 

in Figure 4). 

Nevertheless, the wide scope of false positives gives rise to the assumption that the 

diagnosis performance is of minor quality, since with a threshold of e — 0.5 , 10% 

diagnosed BAs would not actually be such. Retrospectively examined, it showed that 

those false positives were indeed BAs, but of minimal amplitude and thus overlooked 

in the visual diagnosis. Only the 1.8% false positives that remained up to a threshold 

of e = 0.94 were not BAs but electrode artifacts, being  graphoelements that are 

somewhat related to BAs in terms of frequency and amplitude and can only be kept 

apart due to their shape. 

 

 Thus, without explicitely com- 498 C0NNECTI0NIST MODELS paring the system 

and a human expert yet, we showed with these preliminary results that the system's 

precision is of competing accuracy. The comparison of the two rule sets, serving as 

basis for the dual source knowledge base, brought up two interesting results. 

 • The inductively generated rule set, extracted from 

the network, contained more rules than the one deductively acquired from the expert. 

These extra rules seem redundant at first glance, because the expert can easily 

distinguish between different phenomena on the basis of more obvious criteria. But 

for the electronic system, designed to diagnose a vast variety of phenomena, it may 

very well be of great importance to 'know' every extra description neglected by the 

expert.  
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• The extracted rules were more precise in their degree of fuzzy membership, since 

they were actually calculated from examples. For our example of the bulbus artifact, 

the physician formulated the rule:  

(4) IF frequency=delta and amplitude=high THEN ba The automatically generated 

rule base contained a whole group of rules with different rule strengths. The premises, 

conclusions and rule strengths are shown in the following table (compare to the 

network connections in figure 2). Only the rules with rule strenghts (RS) above 

1.0 are listed, while rules with lower rule strengths were pruned.  

 

This detailed rule base is the reason, why the system was able to detect 10% low-

amplitude artifacts (see figure 4). 

This would not have been possible with the mere expert rule (4). 

 

5 Discussion 

By combining three major methods of Artificial Intelligence into a single hybrid 

system we managed to combine most of their advantages, avoiding some of their 

disadvantages at the same time. The hybrid system, described in this article, 

introduces the following new paradigms of modeling the cognitive task of diagnosis: 

• Instead of either acquiring the whole knowledge base automatically from examples, 

being an inductive learning method [Michalski, 1983], or refining a rough knowledge 

base [Ourston and Mooney, 1994], being an enhanced explanation-based learning 

method [Minton et a/., 1990], we are using a dual source knowledge base. This 

knowledge base consists of two sets of rules, coexisting with equal importance, one 

generated deductively from rules formulated by an expert and another one generated 

inductively by machine learning in a neural network. This offers the full range of 

benefits from neural network learning. Additionally, the automatically acquired 

rules can be supervised and adapted in the expert system, eliminating the black box 

problem (see Subsection 2.2). 

• The coexistence of the two resulting rule bases, with the possibility of competing 

knowledge, is not only permitted but desired. The competition of rules and the 

mechanism of taking further rules into account is part of the cognitive decision task. 
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Besides the integration of the existing fuzzy neural network and fuzzy expert system, 

some intelligent interfacing techniques are introduced, that might as well be used for 

different applications:  

• A two-dimensional mapping technique, used to assign the membership values of 

linguistic variable terms to input layer neurons of a network. By this means, it is 

possible to input existing fuzzy representations into neural networks in order to 

autonomously acquire case-based knowledge from sample data (see Subsection 3.2). 

• An application-specific fuzzification of spectral EEG data that will work for most 

other multidimensional data, especially other frequency domain data, like voice 

spectra in speech recognition, as well as all kinds of medical images (see Subsection 

3.1).Our preliminary results (see Section 4) point out some promising features: 

• We proved the possible precision of our system, being more accurate than the 

human expert, when applied to the task of diagnosing bulbus artifacts in EEGs. 

• Comparing the two rule sets of our dual source knowledge base it showed that the 

inductively acquired set was more extensive and of higher precision than the one 

deductively acquired. In future we plan to investigate the interference effects 

of a dual source knowledge base. They occur when the two bases contain 

contradictory or similar rules with different rule strengths. For the case of perfect 

contradiction of two rules, possibly resulting in no conclusion, a third rule could be 

generated by a supervising mechanism to indicate to the user that such a contradiction 

occurred.  
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