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A methodology for the analysis of radial or weakly meshed distribution systems supplying voltage depen-
dent loads is here developed. The solution process is iterative and, at each step, loads are simulated by
means of impedances. Therefore, at each iteration, it is necessary to solve a network made up only of
impedances; for this kind of network, all the voltages and currents can be expressed as linear functions
of a single unknown current (in radial systems) or of two unknown currents for each independent mesh
(for meshed systems). The methodology has been called ‘‘backward” since the unique equation, in case of
radial network, and the linear system of equations, in case of meshed network, in which such unknown
currents appear can be determined by starting from the ending nodes of the radial system, or of the rad-
ialized network (obtained by means of cuts in meshed networks). After a brief presentation of the b/f
method, which is currently the most commonly used technique for solving distribution networks, the
solution methodology is detailed both for radial and for meshed systems. Then, the way in which PV
nodes can be considered is also described.

Finally, the results obtained in the solution of some networks already studied in the literature are pre-
sented with other methods, in order to compare their performances.

The applications show the efficiency of the proposed methodology in solving distribution networks
with many meshes and PV nodes.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The method currently adopted for the analysis of radial distri-
bution systems is the backward/forward method (b/f) [1–12],
which, in only one iteration for constant current loads, or in more
than one iteration for other types of loads (constant power, mixed,
etc.) finds the solution.

It is well known that there exist three main variants of the b/f
method that differ from each other based on the type of electric
quantities that at each iteration, starting from the terminal nodes
and going up to the source node (backward sweep), are calculated:

(i) the current summation method, in which the branch cur-
rents are evaluated;

(ii) the power summation method, in which the power flows in
the branches are evaluated;

(iii) the admittance summation method, in which, node by node,
the driving point admittances are evaluated.

In other terms, the three variants of the b/f method simulate the
loads within each iteration, with a constant current, a constant
power and a constant admittance model. In the forward phase,
ll rights reserved.

: +39 091488452.
).
the three variants are identical since, based on quantities calcu-
lated in the backward phase, the bus voltages are calculated start-
ing from the source node and going towards the ending nodes.
Voltages are then used to update, based on the dependency of
loads on the voltage, the quantities used in the backward sweep
in order to proceed to another iteration.

The process stops when a convergence criterion is verified. If
the network is meshed, the most commonly adopted solution pro-
cess is that of radializing the network by means of a certain num-
ber of cuts [13–16]. For each couple of nodes, created by each cut,
two equal and opposite currents are injected, the value of which is
determined by imposing the condition that the voltage difference
between the two cut nodes goes to zero. This is the compensation
currents method [17]; it uses a reduced Thévenin impedance ma-
trix and a vector of known terms that are the open circuit voltages
between the cut nodes. The latter are determined, for the radial-
ized network, at the end of a forward phase. Since the condition de-
fined at the cut nodes is linear (equality of the voltages) in the
unknowns (the compensation currents), the system to be solved
is also linear and its resolution requires the inversion of the re-
duced Thévenin impedance matrix. The latter is composed of terms
that do not depend on bus voltages; therefore, it is enough to invert
it only once and keep the coefficients of the inverse matrix in order
to use them in the different iterations.

http://dx.doi.org/10.1016/j.ijepes.2009.09.007
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Fig. 2. Scheme of the main feeder shown in Fig. 1 with series and shunt
impedances.
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The compensation currents method is also used to solve a net-
work with PV nodes [18–21]; in this case, fictitious meshes are
added; these are obtained by connecting a null impedance branch
between the PV node and the node taken as the reference for volt-
age at the source node. In such a branch, an ideal voltage generator
is inserted, the magnitude of which is equal to the imposed voltage
at the PV node. The solution of a network having real and fictitious
meshes associated to PV nodes is carried out with the above-de-
scribed method, executing cuts in all the meshes in order to radi-
alize the network. The cuts in the fictitious meshes are executed
so that the two cut nodes are: one, the PV node of the network;
the other, the pole of the ideal voltage generator. The construction
of the reduced Thévenin impedance matrix is carried out based on
all the meshes, both real and fictitious.

A wide review and a comparison study are presented in [22],
where various distribution system load flow algorithms, based on
the forward/backward sweeps, are reviewed, and their conver-
gence ability is quantitatively evaluated for different loading con-
ditions, R/X ratios, and substation voltage levels; moreover, the
effect of static load modeling on the convergence characteristics
of algorithms is investigated.

The analysis methodology set-up here is based on the solution,
at each iteration, of a radial or radialized network made up of series
and shunt impedances and supplied by one point. The series
impedances are those of the lines, while the shunt impedances
are: the capacitances of the lines (concentrated at the two ends);
the capacitors for the reactive power compensation; and the load
equivalents. The load impedances are evaluated at the beginning
of each iteration, based on the rated values of the power of the
loads, on the dependency of the loads on the voltage, and on the
loads’ bus voltages (such values are fixed at the first iteration,
and are calculated in the subsequent iterations).

The simulation of the loads by means of impedances is used in
[23] to solve radial or meshed distribution systems; the unknowns
of the problem are, for radial systems, all the loads currents;
meshed systems are turned into radial by means of cuts and, in this
case, the unknowns are all the loading currents and the cut cur-
rents of the meshes. The solution of the network goes through
the construction of an impedance matrix linking the unknown cur-
rents with the source node voltage; all the unknown currents are
determined by solving a linear system of equations.

Differently from the methodology developed in [23], the tech-
nique here set up, at each iteration allows, in the case of radial sys-
tems, to have only one unknown current in the entire system, the
value of which can be obtained based on the value of the imposed
voltage at the source node of the network. For meshed systems, the
unknown currents, the number of which is twice the number of
independent meshes, can be gained by solving a linear system of
equations obtained by starting from the radialized network and re-
lated to the source node of the network and to the nodes from
which branches belonging to the meshes spread out.

Differently from the compensation currents method, in which
the meshes are considered after having solved the radialized sys-
tem, in the methodology here set up the unknown currents of
the meshed system are solved all together; in this way, it is not
necessary to execute the correction of the bus voltages following
the interesting and efficient technique proposed by Rajicic et al.
in [19] and set up in the aim of limiting the drawbacks of the com-
pensation currents method.

The other quantities of the network, bus voltages and branch
currents can be obtained directly from the values of the unknowns
and as a linear combination of them. Differently from the b/f meth-
od, the calculation of the voltages is not carried out sequentially
starting from the source node and going towards the ending nodes;
at each iteration, each voltage can be evaluated independently
from the others. The methodology is ‘‘backward” since the
equations with the unknown currents (for radial networks) and
the linear system with the unknown currents (for meshed net-
works) are obtained starting from the ending nodes of the radial
system, or from the cut nodes in radialized systems.

The applications show the efficiency of the proposed methodol-
ogy in solving distribution networks in complex situations, namely
in networks with many meshes and fixed voltage nodes. These fea-
tures are particularly favorable in optimization problems solved by
means of the analysis of many possible solutions as, for example,
the reactive power flows compensation ([24]) or the service resto-
ration [25].

2. General analysis methodology

Within the proposed methodology, at each iteration, the loads
at the nodes are modeled by means of impedances calculated
based on the bus power and voltage. So, for each iteration, the
main problem is how to solve efficiently a network made up of ser-
ies and shunt impedances; to this aim, a methodology to solve ra-
dial and meshed networks (presented in the following sections)
has been set up. Once the bus voltages have been determined, they
are compared with those that have been used to evaluate the load
impedances. If the error is below a prefixed margin, the iterative
process stops, otherwise another iteration is started.

2.1. Radial networks solution

Consider the network in Fig. 1 made up of a single feeder sup-
plying N loads; node 0 is the source node with constant voltage
equal to V0 (hereafter, bold letters indicate phasors or complex
quantities, and roman letters real quantities).

Under the assumption that loads are impedances, the network
can be represented by the cascade of series and shunt impedances
shown in Fig. 2; the series impedances, Zser;i, include the line
impedances, while the load impedances, the line capacitances
and the capacitors for reactive power compensation are included
in the shunt impedances, Zsh;i. Calling IZsh;N the unknown current
in the last shunt impedance, Zsh;N , starting from the terminal nodes
and going up to the source node, all the bus voltages (Vi), all the
load currents (IL,i) and all the branch currents (Ib,k) can be calcu-
lated. These quantities are proportional to the current IZsh,N follow-
ing relations such as:

Vi ¼ HV ði;NÞ � IZsh;N ð1Þ

IL;i ¼ HLði;NÞ � IZsh;N ð2Þ

Ib;k ¼ HIb
ðk;NÞ � IZsh;N ð3Þ
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where HV(i, N) is the transfer function of the voltage between the ith
node and the Nth node, HL(i, N) is the transfer function of the load
current between the ith node and the Nth node, and HIb

ðk;NÞ is
the transfer function of the branch current between branch k and
node N. H functions only depend on the series and shunt imped-
ances in the path between node i (branch k) and node N; such
impedances include the series and shunt impedances of the lines,
those of the loads and the reactances of the capacitor banks (for
reactive flow compensation). In the iterative process, only the
capacitors’ and lines’ impedances keep a constant value: the load
impedances change at each iteration due to the variation of the
bus voltages.

Going towards the source node, for this latter a relation similar
to (1) can be found:

V0 ¼ HV ð0;NÞ � IZsh;N ð4Þ

in which the voltage V0 is the known source node voltage. Then,
from (4), the value of the only unknown, the current IZsh,N, can be
found and thus, based on (1)–(3), the values of all the bus voltages
and all the branches’ and loads’ currents can be evaluated.

If the network has a branching node, node D in Fig. 3, from
which two laterals spread out, in the system two ending nodes
can be identified: N1 and N2.

Representing the system by means of the load and branch
impedances and indicating with IZsh;N1 and IZsh;N2 the unknown cur-
rents in the shunt impedances at the two ending nodes, Fig. 4, the
voltage at branching node D can be expressed by the two following
relations:

V 0D ¼ HV ðD;N1Þ � IZsh;N1

V 00D ¼ HV ðD;N2Þ � IZsh;N2

The first is obtained when node D is reached starting from node
N1, the second in the case that node D is reached starting from node
N2. Since

V 0D ¼ V 00D ¼ VD

a coefficient of proportionality, k*, can be determined; it links the
unknown current IZsh;N2 with IZsh;N1 :

IZsh;N2 ¼ ½HV ðD;N1Þ=HV ðD;N2Þ� � IZsh;N1 ¼ k� � IZsh;N1 ð5Þ
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Fig. 3. Main feeder and two laterals (D is a branching node).
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Fig. 4. Scheme of the system shown in Fig. 3 with series and shunt impedances.
Substituting (5) in the expressions of voltages and currents
evaluated starting from the terminal node N2, new relations are
determined in which only the current IZsh;N1 appears as unknown.
In particular, the current in the branch e2, downstream from node
D, can be expressed as a function of IZsh;N1 :

Ib;e2
¼ HIb

ðe2;N2Þ � IZsh;N2
¼ HIb

ðe2;N2Þ � k� � IZsh;N1
ð6Þ

The balance of currents at node D allows the evaluation of the
current in branch d, upstream from node D, that only depends on
current IZsh;N1 :

Ib;d ¼ ½HIb
ðd;N1Þ þ HIb

ðj;N2Þ � k�� � IZsh;N1
ð7Þ

Then, the bus voltage at node C, upstream from node D, can be
calculated:

VC ¼ V 0D þ Zser;DIb;d

¼ ½HV ðD;N1Þ þ Zser;DðHIb
ðd;N1Þ þ HIb

ðe2;N2Þ � k�Þ� � IZsh;N1
¼

¼ HV ðC;N1Þ � IZsh;N1 ð8Þ

Also, the voltage at node C only depends on current IZsh;N1 . In
this case, the transfer function HV ðC;N1Þ between node C and the
ending node N1 takes into account the branching that appears
along the path C–N1.

Following the described methodology, namely going towards
the source node, the voltage of the latter can be expressed as a
function of the unknown current IZsh;N1 . Imposing that in the source
node, the voltage gets the prefixed value, the unknown current can
be calculated and, from this, through the transfer functions, all the
other network quantities.

The just-described process for a network with two ends can be
applied to a radial system with many ending nodes. Having chosen
one of the unknown currents circulating in the terminal shunt
impedances, IZsh;N� , all the others can be related to it by means of
the proportionality coefficient k� (Eq. (5)) which is calculated, at
a branching node, based on the transfer functions of the voltage be-
tween the same branching node and the different ending nodes
downstream from it.

In this way, for the entire system, there is only one unknown, the
current IZsh;N�, the value of which is determined by imposing that the
voltage calculated at the source node has the prefixed value:

V0 ¼ HV ð0;N�Þ � IZsh;N� ð9Þ

All the other quantities of the system, voltages and currents, can
be determined directly from IZsh;N� since these are directly propor-
tional to it through the relevant transfer functions H.

Note that the implementation of the methodology just illus-
trated is extremely simple, since it is not necessary to calculate
the value of the single transfer functions, but it is sufficient to eval-
uate all the network quantities (bus voltages, branch currents and
load currents) depending on an arbitrary value assigned to the cur-
rents circulating on the shunt impedances on the terminal buses. In
Appendix I it is illustrated, for a network with a few buses, the se-
quence of calculations that must be carried out to solve the system.
2.2. Meshed networks solution

Consider a meshed distribution system supplied by a single
node. If m is the number of independent meshes, the network
can be turned into a radial network by means of m cuts; obviously,
at cut nodes, the injection of unknown tie-currents must be consid-
ered. For the couple of nodes, TIk and TIIk, created by the cut of
mesh k, Fig. 5, the following relations are valid:

ITIIk
¼ �ITIk

ð10Þ

VTIk
¼ VTIIk

ð11Þ
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Fig. 5. Cut scheme of the mesh k (TIk and TIIk are cut nodes) and current injection (ITIk and ITIIk) in the cut nodes.
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Under the hypothesis that loads are impedances and the net-
work is ‘purely meshed’, namely that all the branches of the net-
work belong to meshes or to paths from the source node to the
nodes of the mesh (in other terms, that there are no purely radial
parts), the network can be solved following a procedure similar
to the one described in the preceding paragraph.

The network is therefore represented as a set of series and shunt
impedances and can be solved using a procedure in which the un-
knowns are the currents in the terminal shunt impedances of the
network and the tie-currents injected in the cut nodes of the
meshes, Fig. 6.

Under the hypothesis of the absence of purely radial parts, the
terminal nodes of the network are all the cut nodes of the meshes.

It is convenient to execute the cuts at the load nodes and divide
the load into two equal parts between the two cut nodes. In this
way, two benefits can be obtained: (i) the overall number of nodes
of the network increases only by m, and (ii) the unknown currents
in the two impedances, IZsh;TIk

and IZsh;TIIk
, are the same. Indeed,

calling Zsh the shunt impedance of the load in the node chosen
for the execution of the cut in the mesh k, the shunt impedances
in the two cut nodes, Zsh;TIk

and Zsh;TIIk
, are equal and equal to

2Zsh and (11) gives:

Zsh;TIk
IZsh ;TIk

¼ Zsh;TIIk
IZsh ;TIIk

ð12Þ

from which obviously derives:

IZsh; ;TIk
¼ IZsh; ;TIIk

ð13Þ

Finally, in the radialized system, the 2m shunt currents, IZsh ;TIk

and IZsh; ;TIIk
, are unknowns, and the 2m tie-currents injected in

the cut nodes, ITIk
and ITIIk

, are also unknowns. Considering (10)
and (13), the total number of unknown currents is reduced from
4m to 2m. In what follows, we will refer, as far as the cut currents
in the meshes are concerned, to the set of currents ITIk

, and, as far
as the currents in the shunt impedances at the ending nodes are
concerned, to the set IZsh; ;TIk

.
The 2m relations allowing the determination of 2m unknown

currents can be determined, imposing that:

– for the source node, the voltage is set to a prefixed value;
– for the branching nodes, namely for the nodes from which two

or more ramification branches spread out downstream (in the
radialized system, both the terms downstream and upstream
are valid), the voltages calculated through the quantities related
to any couple of ramification branches are the same.
TIk TIIk 

kTII
IZ

kTI

kTII
kTIII

sh,
IZsh,

Fig. 6. Unknown currents related to the mesh k.
The process allowing the determination of the 2m equations in
2m unknown currents is similar to the one described for radial sys-
tems: starting from the terminal nodes, the currents (in the
branches and loads) and the voltages at the nodes can be evaluated
as the superposition of the homonymous quantities calculated by
forcing the system first with the terminal shunt currents, then with
the tie-currents injected into the tie-nodes.

Therefore, the bus voltages and the currents of the loads or of
the branches are expressed by linear combinations of the un-
known currents (all or part of them) following relations, similar
to (1)–(3):

Vi ¼
X
½HV ði; TIjÞ � IZsh ;TIj

þ H�V ði; TIjÞ � ITIj
� ð14Þ

IL;i ¼
X
½HLði; TIjÞ � IZsh ;TIj

þ H�Lði; TIjÞ � ITIj
� ð15Þ

Ib;k ¼
X
½HIb
ðk; TIjÞ � IZsh ;TIj

þ H�Ib
ðk; TIjÞ � ITIj

� ð16Þ

where for the branch current, Ib;k, the summation is extended to the
set of terminal nodes Tj (cut nodes) that in the radialized network
are supplied through branch k. For load voltage and current, sum-
mation is extended to the terminal nodes supplied by the branch
with the sending bus node i.

If D is the sending bus of p branches, namely if D is a branching
node, Fig. 7, p relations similar to (14) can be found for the voltage
at node D; calling r and s a couple of branches which have D as the
sending bus, the voltage in D, calculated through the quantities of
branch r, is given by:

VD;r ¼
X

r

½HV ðD; TIjÞ � IZsh ;TIj
þ H�V ðD; TIjÞ � ITIj

� ð17Þ

where summation is extended to the set of terminal nodes that is
supplied through branch r. In the same way, the voltage in D, calcu-
lated through the quantities of branch s, is given by:

VD;s ¼
X

s

½HV ðD; TIjÞ � IZsh ;TIj
þ H�V ðD; TIjÞ � ITIj

� ð18Þ

where summation is extended to the set of terminal nodes that is
supplied through branch s. As it must be:

VD;r ¼ VD;s ð19Þ

from which the following relation can be obtained:
X

s
½HV ðD; TIjÞ � IZsh ;TIj

þ H�V ðD; TIjÞ � ITIj
� �
X

s
½HV ðD; TIjÞ � IZsh ;TIj

þH�V ðD; TIjÞ � ITIj
� ¼ 0 ð20Þ

For a node with p branches, among all the possible equations
similar to (20), p � 1 equations are independent. For a network
with m meshes, it is possible to find 2m � 1 independent equations
of the same type as (20). Indeed, making the network radial with m
cuts, 2m terminal branches can be determined. In the paths con-
necting each of these 2m branches with the source node, it is pos-
sible to determine 2m expressions of the voltages of the same type
as (17) and (18). From these, equating at the branching nodes all
the possible couples, 2m � 1 independent equations (like 20) can



1

r

s

p

D

Fig. 7. Branching node.
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be gained. In order to solve the problem another equation is
needed; the latter is the one expressing the voltage at the source
node:

V0 ¼
X
½HV ð0; TIjÞ � IZsh;TIj

þH�V ð0;TIjÞ�ITIj
� ð21Þ

where obviously, summation is extended to all the terminal nodes
of the radialized network.

Consider now the presence of radial parts in the above-men-
tioned meshed system, namely of radial structures that have
the origin node belonging to one of the meshes or to the path
connecting the source node to one of the nodes belonging to a
mesh, Fig. 8.

The general methodology set-up can also be applied to any such
partial network. The generic partial radial network, having node OM

as the origin node and a certain number of terminal nodes, is rep-
resented by a set of series and shunt impedances. For a radial struc-
ture, we are reminded that having chosen one of the unknown
currents as a reference, all the other terminal unknown currents
can be expressed as proportional to it. Fixed then as the reference,
for each of the radial parts, one of its terminal nodes N* and the rel-
evant unknown shunt current, IZsh;� ;N

� , the voltage in the origin
node of the partial radial network is given by:

VOM ¼ HV ðOM;N
�Þ � IZsh ;N

� ð22Þ

where HV ðOM;N
�Þ also takes into account possible ramifications in

the partial radial network. On the other hand, the node OM belongs
to the meshed system, therefore its voltage is also given by:

VOM ¼
X
½HV ðOM; TIjÞ � IZsh;TIj

þ H�V ðOM; TIjÞ � ITIj
� ð23Þ

where summation is extended to the set of terminal nodes that
are supplied, in the radialized network without radial parts,
through the branch, or one of the branches, having node OM as
the sending bus. Equating (22) and (23), the relation between
the unknown current of the partial radial network and the un-
known currents of the purely meshed network appearing in (23)
can be deduced:

IZsh ;N
� ¼

X
HV ðOM ; TIjÞ=HV ðOM;N

�Þ
h i

� IZsh ;TIj

þ
X

H�V ðOM ; TIjÞ=HV ðOM;N
�Þ

h i
� ITIj

ð24Þ
meshed network 

O 
OM

Fig. 8. Partial radial networks spreading from the meshed system.
Since the current circulating in branch k of the partial radial
network, having OM as the sending bus, is proportional to IZsh;N� :

Ib;k ¼ HIb
ðk;N�Þ � IZsh ;N

� ð25Þ

substituting (24) for the preceding expression, the current in branch
k can be determined as a function of the unknown currents of the
purely meshed network:

Ib;k ¼ HIb
ðk;N�Þ � ½

X
HV ðOM; TIjÞ=HV ðOM;N

�Þ� � IZsh ;TIj

þ HIb
ðk;N�Þ � ½

X
H�V ðOM; TIjÞ=HV ðOM;N

�Þ� � ITIj
ð26Þ

The balance of the currents at node OM can thus be carried out
without the introduction of the further unknown represented by
the terminal shunt current of the partial radial network, IZsh;� ;N

� . As
a conclusion, the presence of radial parts does not modify the total
number of unknown currents: instead, the coefficients – on which
the voltages and the currents in the purely meshed network linearly
depend – are influenced by the unknown currents of the radial parts.

The system of equations, made up of 2m � 1 relations like (20)
and of the relation (21), in 2m unknowns IZsh; ;TIj

and ITIj
; is linear:

once the unknowns are determined, it is possible to evaluate di-
rectly all the voltages and currents of the meshed network by
equations (14)–(16). For radial parts, the unknown current IZsh;� ;N

�

must first be calculated by means of (24) and then all the electric
quantities that are proportional to it can be evaluated.

In Appendix II it is illustrated, for a network with a few buses
and only one mesh, the sequence of calculations that must be car-
ried out to solve the system.

3. PV nodes

The simulation of PV nodes is carried out considering, in such
nodes, the presence of shunt reactances that can provide reactive
power to keep the bus voltage magnitude at a specified value.
The currents injected into the PV nodes from such reactances are
unknowns and can be evaluated by the Thévenin theorem based
on the initial and final conditions of the network. The initial condi-
tions are related to the absence of PV nodes, while the final condi-
tions refer to the presence of reactances in the PV nodes and to the
voltage values imposed at the same nodes.

Indicating with ½V f
PV � and with ½V i

PV � the array of the PV node
voltages in the final unknown and initial conditions and with
½If

PV � the vector of the currents injected into the nodes, the Thévenin
theorem gives:

½V f
PV � � ½V

i
PV � ¼ ½Z� � ½I

f
PV � ð27Þ

where ½Z� is the reduced bus impedance matrix obtained by neglect-
ing the load impedances and considering only the PV nodes and
some branching nodes in the network. Indeed, if the network is ra-
dial, only the branching nodes from which PV nodes are seen on to-
tally different paths must be considered; if the network is meshed,
the purely radial parts must be omitted (unless they include PV
nodes) and only all the branching nodes of the meshes are to be
considered.

The final conditions of the network are the following:

– for the jth PV node, indicating with Bj the unknown susceptance
(positive if capacitive) of the shunt apparatus, the aim of which
is to have a voltage with a specified magnitude Vsp

j , the following
relation holds:
If
j ¼ �jBjV

f
j ð28Þ

where V f
j is the jth bus voltage phasor and the minus sign takes

into account that the currents injected into the network must be
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considered positive; the in-phase and in-quadrature components
of Vf

j must meet the following condition:

V f 2

j;p þ V f 2

j;q ¼ V sp2

j ð29Þ

Defining a matrix ½B� of order NPV

½B� ¼

B1 0 ::: 0
0 B2 0 0
::: ::: ::: :::

0 0 ::: BNPV

2
6664

3
7775 ð30Þ

and indicating with ½Vf
PV ;p�, ½V

f
PV ;q�, the vectors of the in-phase and in-

quadrature components of the voltages at the PV nodes and with
½Vsp

PV �, the vector of specified values for the magnitudes of the volt-
ages at the same nodes, the following relations can be written:

½V f
PV � � ½V

i
PV � ¼ �j½Z� � ½B� � ½V f

PV � ð31Þ

½Vf
PV ;p� � ½V

f
PV ;p�

t þ ½Vf
PV ;q� � ½V

f
PV ;q�

t ¼ ½Vsp
PV � � ½V

sp
PV �

t ð32Þ

where apex t indicates the transposition operator. From each com-
plex equation of the system (31), two equations can be obtained, in
Construction of the reduced bus 
impedance matrix |Z| in order to evaluate 
the unknown susceptances at PV nodes

Initialization of bus voltages 

Iteration IT = 1

Calculation of  loads impedances on 
the basis of the bus voltages 

Initialization of currents in the shunt 
impedances of terminal nodes 

Calculation of branch currents, of loads 
currents and of  bus voltages starting from  

terminal nodes up to the source node 

At the source node, calculation of the 
correction factor for  bus voltages 

(eqn. 9) and their correction 

Iterative solution of the equation 
system made of eqns. 32, 33 and 34 

Evaluation of voltage variations in 
the current iteration 

Verification of the convergence criterion. 
Voltage variation at all nodes ε ? 

STOP

Yes 

IT = IT+1 

No 

Data reading 

Calculation of the susceptances to be added to 
the existing ones at the PV nodes and 
subsequent correction of the voltages  

Fig. 9. Flow-chart of the procedure for radial systems
terms of the components in phase and in quadrature of the voltages
at the PV nodes; for the generic PV node the two equations are:

Vf
i;p � Vi

i;p ¼ �
X

j¼1;NPV

BjðRijV
i
j;q þ XijV

i
j;pÞ ð33Þ

Vf
i;q � Vi

i;q ¼ �
X

j¼1;NPV

BjðXijV
i
j;q � RijV

i
j;pÞ ð34Þ

where Rij and Xij are the real and the imaginary part of the term Zij

belonging the matrix [Z].
Iteration IT = 1
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Fig. 10. Flow-chart of the procedure for meshed systems.
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The system composed by NPV (32), NPV (33) and NPV (34) is
non-linear and for its solution, with respect to the 3 NPV unknown
quantities (Vf

PV ;p; Vf
PV ;q; Bj), an easy iterative method can be applied

(in the implementation of the methodology, the Gauss-Seidel
method has been employed).

4. Implementation of the methodology

To solve a radial or meshed distribution network in the absence
of PV nodes, with the methodology set-up, at each iteration it is re-
quired to solve an equation with a single unknown current ðIL;N� Þ
for a radial system, or a system of 2m equations with 2m unknown
currents (IZsh ;TIj

and ITIj
, j ¼ 1;2; . . . ;m), for a network with m inde-

pendent meshes. The problem is the evaluation, at each iteration,
of the coefficient of (9), or of the coefficients of the unknowns in
the system of Eqs. (20) and (21).

If PV nodes are present in the network, the susceptances of such
nodes are evaluated at the end of each iteration when the PV
nodes’ voltages are available. Since the mathematical models
(32)–(34) related to PV nodes are non-linear, the susceptances
are evaluated by means of an iterative technique. Moreover, at
the end of the first iteration, the values of the susceptance calcu-
lated for the different PV nodes are given to these nodes; then, in
the following iterations, their variations are calculated and these
are added to the existing susceptances. To accelerate the conver-
Table 1
Results attained in the literature and with the proposed method

[. . .] Nodes Meshes PV nodes fc e IT[...] ITest Itint/ITest

19 11 3 2 1.0 10�6 11 7 10.7
18 14 7 4 0.5 10�4 7 4 6.3
18 14 7 4 1.0 10�4 9 6 5.5
18 14 7 4 1.4 10�4 14 8 5.1
18 14 7 4 1.5 10�4 15 9 5.0
18 14 7 4 1.8 10�4 19 10 7.1
19 30 12 5 0.5 10�4 10 5 6.0
19 30 12 5 0.7 10�4 11 6 6.0
19 30 12 5 0.9 10�4 14 6 6.7
19 30 12 5 1.0 10�4 14 6 6.7
19 30 12 5 1.2 10�4 18 7 6.4
15 69 5 4 1 10�4 6 5 12.4

Fig. 11. Test system with 85
gence, based on an efficient technique proposed in [9], once the
values of susceptances to be added in the PV nodes have been cal-
culated, before proceeding to a new iteration, the bus voltages’ val-
ues are corrected to take into account the susceptances just
calculated.

For radial and meshed systems, the main steps of the procedure
are shown in the flow-charts reported in Figs. 9 and 10
respectively.
5. Applications

The main aim of the applications is to compare the developed
methodology with other methodologies already proposed in the
literature.

Concerning radial or weakly meshed systems, the performances
of the proposed methodology are analogue to those of other similar
methods based, at each iteration, on loads simulation by means of
impedances; in [22] for different methodologies present in litera-
ture and applied to electrical systems with different number of
buses, these performances are detailed, varying loading factor
and the R/X lines ratio. The conclusions reported in [22] underline
that, in the case of radial or weakly meshed systems, the loads sim-
ulation by means of impedances does not improve the speed of
convergence. To complete results and conclusions reported in
[22], the applications here executed regard the analysis of complex
situations, i.e. electrical distribution systems with a high number
of meshes and PV nodes.

In particular, networks reported in [16–20] have been analysed
in all the hypothesized loading conditions. The comparison is
based on the number of iterations required to reach the solution
for a given convergence factor. In Table 1, the following quantities
are reported: reference number of the paper in which the results
are presented, number of nodes of the considered networks, num-
ber of meshes, number of PV nodes, loading factor fc, convergence
factor e, number of iterations IT[...] reported in the paper, number of
iterations obtained with the proposed methodology ITest, and ratio
between the number of iterations of the internal and that of the
external cycle Itint/ITest.
nodes and 10 meshes.



Table 2
Results.

Meshes 1 5 10

PV nodes fc ITest Itint/ITest CPU (p.u.) ITest Itint/ITest CPU (p.u.) ITest Itint/ITest CPU (p.u.)

1 1 7 10.6 1 5 7.8 1.38 5 4.6 3.07
2 1 5 6.4 0.73 6 6.7 1.66 4 7.3 2.48
3 1 7 7.6 1.05 6 7.8 1.66 4 9.3 2.49
4 1 6 13.7 0.99 5 19 1.60 4 14.3 2.56
1 2 8 18.5 1.22 6 11.8 1.70 6 6 3.59
2 2 8 33.4 1.43 6 8.2 1.67 6 6.3 3.66
3 2 7 13.1 1.10 6 9.5 1.70 6 9.2 3.72
4 2 6 19.7 1.03 6 13.3 1.82 6 13.8 3.75
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In order to obtain some information on CPU times as well, the
developed methodology has been applied to solve the system with
85 buses and 10 meshes shown in Fig. 11; data on lines and loads
are reported in [3]. The network has been solved considering com-
binations among the following conditions:

– number of PV nodes: 1, 2, 3 and 4;
– number of meshes: 1, 5 and 10;
– rated load (loading factor fc = 1) and loads increased to 100%

(fc = 2).

In Table 2 are reported, for each of the considered conditions,
the number of iterations required to reach the final solution, ITest,
the ratio between the overall number of iterations of the internal
cycle, ITint, and that of the external cycle, and the total CPU time,
expressed in p.u. compared to the CPU time spent to solve the sys-
tem with 1 PV node, 1 mesh and unitary load factor. The external
cycle convergence factor, eest, was fixed to 10�4, while that of the
internal cycle was varied based on the cumulative number of iter-
ations of the external cycle, eint = 10exp [�(1 + ITest)], with the con-
straint that: ein P eest. The voltage magnitude at the PV nodes was
fixed, for all the nodes, to 1 p.u. when the load is at the rated value,
and to 0.95 p.u. when the load doubles.

The results indicate that the non-linearity of the model, intro-
duced by the presence of PV nodes, does not influence the overall
number of iterations required to reach the final solution as the
number of PV nodes and meshes varies. The number of iterations
increases when the load of the system increases; on the other
hand, such an increase is limited, since it is one or two iterations
more.

The CPU times are quite sensitive to the number of meshes and
do not depend on the number of PV nodes; obviously, they increase
with the loading factor.

In all the considered cases, the reactive power injected at the PV
nodes has also been evaluated and it has been compared to the va-
lue obtained by solving the system with the Newton–Raphson
method. In all the cases, the absolute value of the difference be-
tween the two values has the same order of magnitude as the con-
vergence factor.
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6. Conclusions

The methodology here developed to solve radial or meshed dis-
tribution networks is based on an iterative technique in which, at
each iteration, loads are simulated as impedances. If the network
is radial, all the quantities of the system, voltages and currents
are proportional to only one unknown current through transfer
functions of the network that depend only on the series and shunt
impedances of the system. The only unknown, that is the current in
the shunt impedance of a terminal node, can be obtained by the
condition that the voltage at the source node must have a prefixed
value. The meshed network is transformed to a radial structure by
means of cuts and the introduction, in the radialized network, of
currents injected at the cut nodes. In this case, the number of un-
knowns is twice the number of independent meshes and they can
be determined by solving a linear system of equations, the coeffi-
cients of which must be calculated at each iteration depending
on changes of the load impedances.

The methodology is backward since, to evaluate the coefficients
of the unknowns, one proceeds from the terminal nodes of the ra-
dial or radialized system to the source node. Unlike the b/f method,
in which the calculation of the voltages must be carried out
sequentially, starting from the source node and going towards
the terminal nodes (forward sweep), in the methodology proposed
here, bus voltages can be evaluated one at a time. In the backward
sweep, they are directly linked to unknowns through transfer func-
tions. For PV nodes, a non-linear model has been set up allowing
results to be gained with a precision comparable to those obtain-
able with models usually adopted for transmission systems. The
evaluation of the unknowns in the PV nodes is carried out at the
end of each iteration by an iterative process; in particular, the sus-
ceptance of the PV node is given to the node; therefore, in the sub-
sequent iterations, only its increment is evaluated. In the presence
of PV nodes, the internal cycle does not significantly worsen the
performances of the methodology; indeed, both the number of
iterations and the CPU time are insensitive to the number of PV
nodes in the network.

The applications have shown that the efficiency of the method-
ology strongly improves starting from simple situations (radial or
weakly meshed systems) till to more complex ones (systems with
a high number of meshes and PV nodes); for this type of electrical
systems the performances of the proposed methodology are better
than those obtained with different approaches.

Other benefits of the methodology are: the possibility to take
account of any dependency of the loads on the voltage, reduced
computational requirements, possible extension to transmission
systems with a limited number of meshes, and high precision of
results.

Appendix I. Example of solution of a radial system

Fig. A-1



seR

Vo

3

1

seR

shR

2

shR

seR

shR

shR 4
seR

seR seR

Vo

2,shI

3

1

seR

shR2

2

'2,shI

shR

shR

4

seR

4,shI

MI

MI−2’

2 shR

shR

seR

seR

Fig. A-2.

A. Augugliaro et al. / Electrical Power and Energy Systems 32 (2010) 271–280 279
V0 = 30 V
Rse = 1 X
Rsh = 20 X
Ish;4 = Ish;2 = 1 A values arbitrarily assigned
From terminal bus 2 to branching bus 1:
V2 = 20 � 1 = 20 V
I1,2 = 1 A
V1 = 20 + 1 � 1 = 21 V
From terminal bus 4 to branching bus 1:
V4 = 20 � 1 = 20 V
I3,4 = 1 A
V3 = 20 + 1 � 1 = 21 V
Ish;3 = 21/20 = 1.05 A
I1,3 = 1 + 1.05 = 2.05 A
V 01 = 21 + 1�2.05 = 23.05 V
The correction factor of the current Ish;2 is:
k = 23.05/21 = 1.09762
Correction of the quantities (already calculated) proportional to
Ish;2

Icor
sh;2 ¼ 1 � 1:09762 = 1.09762 A

Vcor
2 ¼ 20 � 1:09762 = 21.95 V

Icor
1;2 = 1.09762 A

Vcor
1 ¼ 21 � 1:09762 = 23.05 V (=V 01Þ

From branching node 1 to source node:
Ish;1 = 23.05/20 = 1.1525 A
I0:1 ¼ Icor

1;2 þ I1;3 þ Ish;1 = 4.30 A
V 00 ¼ 23:05þ 1 � 4:30 = 27.35 V
The global correction factor is:
K = 30/27.35 = 1.097
Solution of the bus voltages:
V1 = 1.097 � 23.05 = 25.28 V
V2 = 1.097 � 21.95 = 24.08 V
V3 = 1.097 � 21 = 23.03 V
V4 = 1.097 � 20 = 21.94 V

Appendix II. Example of solution of a meshed system

Fig. A-2
V0 = 30 V
Rse = 1 X
Rsh = 20 X
Ish;4 = Ish;2 = Ish;2 = IM = 1 A values arbitrarily assigned
Ish;2 = Ish;2 = Ish and IM are the unknowns of the system
From terminal bus 2 to branching bus 1 (in parentheses the cur-
rent whose unitary value determines the value of the coefficient
is indicated):
V2 = 40 (Ish)
I1;2 = 1(Ish) + 1(IM)
V1 = 41(Ish) + 1(IM)
From terminal bus 4 to branching bus 3:
V4 = 20 (Ish;4)
I1,2 = 1(Ish;4)
V1 = 21(Ish;4)
From terminal bus 20 to branching bus 3:
V20 = 40 (Ish)
I3,2’ = 1(Ish) � 1(IM)
V 03 ¼ 41ðIshÞ � 1ðIMÞ
From V3 ¼ V 03 it is possible to derive the equivalence of Ish;4 and
the unknowns Ish and IM:
Ish;4 = 41/21(Ish) � 1/21(IM) = 1.95(Ish) � 0.048(IM)
Correction of the current I3,4:
I3;4 = 1(Ish;4) = 1.95(Ish) � 0.048(IM)
From bus 3 to branching node 1:
Ish;3 = 2.05(Ish) � 0.05(IM)
I1;3 ¼ I03;2 þ I3;4 þ Ish;3 ¼ 5ðIshÞ � 1:098ðIMÞ
V 01 ¼ 46ðIshÞ � 2:098ðIMÞ
From V1 ¼ V 01 it is possible to obtain the first equation of the
system:
5(Ish) � 3.098(IM) = 0
From bus 1 to source node:
Ish;1 = 2.05(Ish) + 0.05(IM)
I0,1 = I1,2 + I1,3 + Ish;1 = 8.05(Ish) � 0.048(IM)
V0 = 49.05(Ish) + 0.952(IM).
Being V0 = 30 V it is possible to obtain the second equation of
the system:
49.05(Ish) + 0.952(IM) = 30
5(Ish) � 3.098(IM) = 0
The solution is:
Ish = 0.593
IM = 0.957
The bus voltages are:
V1 = 41 � 0.593 + 0.957 = 25.27 V
V2 = 40 � 0.593 = 23.72 V
V3 = 41 � 0.593 � 0.957 = 23.35 V
V4 = 20 � Ish;4 = 20 � (1.95 � 0.593 � 0.048 � 0.957) = 22.21 V
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