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bstract

An accurate and computationally efficient means of classifying electromyographic (EMG) signal patterns has been the subject of considerable
esearch effort in recent years. Quantitative analysis of EMG signals provides an important source of information for the diagnosis of neuromuscular
isorders. Following the recent development of computer-aided EMG equipment, different methodologies in the time domain and frequency domain
ave been followed for quantitative analysis. In this study, feedforward error backpropagation artificial neural networks (FEBANN) and wavelet
eural networks (WNN) based classifiers were developed and compared in relation to their accuracy in classification of EMG signals. In these
ethods, we used an autoregressive (AR) model of EMG signals as an input to classification system. A total of 1200 MUPs obtained from 7 normal

ubjects, 7 subjects suffering from myopathy and 13 subjects suffering from neurogenic disease were analyzed. The success rate for the WNN

echnique was 90.7% and for the FEBANN technique 88%. The comparisons between the developed classifiers were primarily based on a number
f scalar performance measures pertaining to the classification. The WNN-based classifier outperformed the FEBANN counterpart. The proposed
NN classification may support expert decisions and add weight to EMG differential diagnosis.
2006 Elsevier B.V. All rights reserved.
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. Introduction

More than 100 neuromuscular disorders that influence the
pinal cord, nerves or muscles are present. Early finding and
iagnosis of these diseases by clinical examination and lab-
ratory tests is crucial for their management as well as their
nticipation through prenatal diagnosis and genetic counselling.
uch information is also valuable in research, which may lead

o the understanding of the nature and eventual treatment of
hese diseases (Christodoulou and Pattichis, 1999). Motor unit

orphology can be studied by recording its electrical activity,
nown as electromyography (EMG). In clinical EMG motor unit
otentials (MUPs) are recorded using a needle electrode at slight
oluntary contraction. The MUP reflects the electrical activity
f a single anatomical motor unit. It represents the compound
ction potential of those muscle fibres within the recording range

f the electrode. Features of MUPs extracted in the time domain
uch as duration, amplitude and phases proved to be very help-
ul in differentiating between muscle and nerve diseases with

∗ Corresponding author. Tel.: +90 344 219 12 53; fax: +90 344 219 10 52.
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s
d
p
t
t
c
s

165-0270/$ – see front matter © 2006 Elsevier B.V. All rights reserved.
oi:10.1016/j.jneumeth.2006.03.004
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he duration measure being the key parameter used in clinical
ractice (Pattichis and Pattichis, 1999). With increasing mus-
le force, the EMG signal shows an increase in the number of
ctivated MUPs recruited at increasing firing rates, making it
ifficult for the neurophysiologist to distinguish the individual
UP waveforms. EMG signal decomposition and MUP classifi-

ation into groups of similar shapes give significant information
or the assessment of neuromuscular pathology (Christodoulou
nd Pattichis, 1999).

Nevertheless, the measurement of the duration parameter is a
omplicated task depending on the neurophysiologist and/or the
omputer-aided method used. The description of an extensively
ccepted criterion that will allocate the computer-aided mea-
urement of this parameter is still absent (Stalberg et al., 1986).
n the other hand, frequency domain features of MUPs like the
ean or median frequency, bandwidth and quality factor give

upplementary information for the assessment of neuromuscular
isorders and it has recently been shown that the discriminative
ower of the MUP mean or median frequency is comparable to

he duration measure (Pattichis and Elia, 1999) or the spike dura-
ion measure (Pfeiffer and Kunze, 1993). Recent advances in
omputer technology have made automated EMG analysis fea-
ible. Although a number of computer-based quantitative EMG

mailto:asubasi@ksu.edu.tr
dx.doi.org/10.1016/j.jneumeth.2006.03.004
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nalysis algorithms have been developed, some of them are com-
ercially available, practically none of them have gained broad

cceptance for widespread routine clinical use. Pattichis and Elia
1999) used autoregressive and cepstral analyses combined with
ime domain analysis in classification of EMG signals. Also De

ichele et al. (2003) described how the proper use of the wavelet
ross-correlation analysis on surface signals of the above two
ifferent muscles allows a more comprehensive classification
f subjects and, at the same time, a reliable temporal evolution
nalysis of Parkinson’s disease.

Pattichis et al. (1995) used MUP parameters as input to a
equential parametric pattern recognition classifier. Loudon et
l. (1992) used eight MUP features as input to a statistical pat-
ern recognition technique for classification. The decomposition
f superimposed waveforms used a combination of procedural
nd knowledge-based methods. Finally Hassoun et al. (1994a,b)
roposed a system called neural network extraction of repeti-
ive vectors for electromyography (NNERVE), and they used
he time domain waveform as input to a three-layer artificial
eural network (ANN) with a “pseudo unsupervised” learn-
ng algorithm for classification. Christodoulou and Pattichis
1999) used two different pattern recognition techniques for
he classification of MUPs. They used an artificial neural net-
ork (ANN) technique based on unsupervised learning, using
modified version of the self-organizing feature maps (SOFM)
lgorithm and learning vector quantization (LVQ) and a sta-
istical pattern recognition technique based on the Euclidean
istance. In addition, Schizas and Pattichis (1997) used genetics-
ased machine learning as pattern classifiers in EMG. There
re numerous limitations in the existing quantitative EMG anal-
sis methods, which limit their wider applicability in clinical
ractice.

The theory of wavelets can be exploited in understanding
he universal approximation properties of wavelet neural net-
orks (WNNs), and in providing initialization heuristics for

ast training. WNNs offer a good compromise between robust
mplementations resulting from the redundancy characteristic of
on-orthogonal wavelets and neural systems, and efficient func-
ional representations that build on the time–frequency local-
zation property of wavelets (Daubechies, 1992; Sureshbabu
nd Farrell, 1999; Xu and Ho, 2002). Much research has been
one on applications of WNNs, which combine the capabil-
ty of artificial neural networks in learning from processes and
he capability of wavelet decomposition (Zhang and Benveniste,
992; Pati and Krishnaparasad, 1993), for identification and con-
rol of dynamic systems (Sureshbabu and Farrell, 1999; Zhang
t al., 1995; Wong and Leung, 1998). Zhang and Benveniste
1992), proposed a new notation of wavelet network as an
lternative to feedforward neural networks for approximating
ny square-integrable non-linear functions based on the wavelet
ransform theory, and a backpropagation algorithm is adopted
or wavelet network training. Zhang et al. (1995) described a
avelet-based neural network for function learning and esti-

ation, and the structure of this network is similar to that

f the radial basis function network except that the radial
unctions are replaced by orthonormal scaling functions. In
ddition, Zhang (1997) presented wavelet network construc-
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ion algorithms for the purpose of non-parametric regression
stimation.

This paper presents a comprehensive investigation of the
racticality of using an AR model and WNN to extract clas-
ifiable features from EMG. Here, AR power spectral den-
ity (PSD) was used to define EMG signal representations. A
ariety of features based on this model were classified with
avelet neural network. The system is intended to decom-
ose EMG signals at low to moderate force levels. The pro-
osed techniques were successfully applied in the classifica-
ion and decomposition of EMG signals recorded from normal
NOR) subjects and subjects suffering from myopathy (MYO)
nd neurogenic (NEU) disorder. By using AR PSD and WNN
esulted in the best classification percentages than FEBANN
ethod.

. Materials and method

.1. Subjects and data acquisition

All the measurements from patients and control group were
one in Neurology Department of University of Gaziantep.
iagnostic criteria for the subjects selected were based on clin-

cal findings; on the other hand, if it is required, muscle biopsy
as performed. Normal, myopathic and neurogenic subjects
ere evaluated by expert doctors. All the EMG data, collected

rom 27 subjects have been analyzed. Data were recorded from
healthy subjects (three males and four females) with ages

anging from 10 to 43 years (mean age ± standard deviation
S.D.): 30.2 ± 10.8 years), 7 myopathic subjects (four males
nd three females) with ages ranging from 7 to 46 years (mean
ge ± standard deviation (S.D.): 21.5 ± 13.3 years) and 13 neu-
ogenic subjects (eight males, five females) with ages rang-
ng from 7 to 55 years (mean age ± standard deviation (S.D.):
5.1 ± 17.2 years).

An EMG system (Keypoint; Medtronic Functional Diagnos-
ics, Skovlunde, Denmark) with standard settings was used. The
MG signal was acquired from the biceps brachii muscle using a
oncentric needle electrode (0.45 mm diameter with a recording
urface area 0.07 mm2; impedance at 20 Hz below 200 k�). At
east 20 different MUPs were obtained from each muscle via five
o seven muscle insertion. Between two sites, the needles were
ithdrawn for at least 5 mm. The position of the needle near

o active muscle fibers was guided by acoustic and visual con-
rol of the EMG signal. The EMG signal was recorded at force
evels approximately 30% of maximum voluntary contraction
MVC) under isometric conditions. The signal was acquired for
s, bandpass filtered at 5–10 kHz, and sampled at 20 kHz with
2-bit A/D resolution. The EMG signal was then low-pass fil-
ered at 2 kHz (Fig. 1).

.2. Autoregressive modelling of EMG signals
The AR method consists of modelling the EMG signal as
he output of a linear filter driven by a white noise. This filter,
eferred to as AR, is a linear combination of the previous samples
regressive) of the output itself (auto). The equation of a classical



362 A. Subasi et al. / Journal of Neuroscience Methods 156 (2006) 360–367

A

x

w
e
m
A
n
s
t
p
s
i
f
c
i
G
p
o
P
A
m
w
d
e
t
s
t
y
a
v

m
(

m
b
t
a

P

w
E
p
A
a
AR Burg spectrum of myopatic EMG signal and Fig. 4 shows
an AR Burg spectrum of neurogenic EMG signal.
Fig. 1. Normal, myopathic and neurogenic EMG signals.

R complex process, in a non-stationary context, is given by:

(n) = −
p∑
i=1

aix(n− i) + e(n) (1)

here ai(n) are AR complex parameters, p the AR model order,
(n) is a white complex noise and n is the sample time. The
ain steps involved in the spectrum estimation procedure using
R modelling are as follows: (a) optimal model order determi-
ation; (b) AR parameters estimation; (c) estimating the power
pectral density using the above parameters. Determination of
he optimal AR model order is an important part of the whole
rocedure since too low a model order tends to smooth the actual
pectrum and too high order tends to introduce spurious peaks
n the power spectrum. One of the commonly used methods
or determining model order is called the Akaike information
riterion (AIC) (Akaike, 1974). It is based on minimizing an
nformation theoretic criterion (Proakis and Manolakis, 1996;
uler and Ubeyli, 2003; Subasi et al., 2006). One of the most
opular methods for estimating the AR parameters of a sequence
f N data points is using Burg’s algorithm (Tseng et al., 1995;
roakis and Manolakis, 1996; Pardey et al., 1996). In this, the
R parameters are estimated using a constrained least squares
inimization procedure. This is a statistically accurate model
hen the amplitudes of the signal have a zero mean Gaussian
istribution. However, it can be used to a good approximation
ven when the signals have a different distribution. It assumes
hat the data sequence is stationary i.e. the first and second order
tatistics of the sequence x(n) do not change with time. The spec-

rum estimation method based on autoregressive (AR) modelling
ields better resolution without the problem of spectral ‘leak-
ge’ (Muthuswamy and Thakor, 1998; Guler et al., 2001). A
ery good tutorial on the theoretical foundations of the different
Fig. 2. AR Burg spectrum of normal EMG signal.

ethods of spectrum estimation can be found in Kay and Marple
1981).

The estimation problem of these parameters covers the for-
ation and resolution of the set of equations, which can easily

e calculated. AR spectral estimation of data’s estimation from
he order p was given with the following equation (Isaksson et
l., 1981).

(f ) = σp2�t∣∣1 + ∑p
i=1api e−j2πfi�t∣∣2 (2)

here ap0 = 1. Thus, for estimation of spectral power density of
MG signal only existence of p number api parameters, and σ2

p

arameters, which are the variances of white noise, are sufficient
R coefficients, which identify the amplitude rates. Fig. 2 shows

n AR Burg spectrum of normal EMG signal, Fig. 3 shows an
Fig. 3. AR Burg spectrum of myopathic EMG signal.
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Fig. 4. AR Burg spectrum of neurogenic EMG signal.

.3. Classification using artificial neural networks

Artificial neural networks (ANNs) are formed of cells sim-
lating the low-level functions of biological neurons. In ANN,
nowledge about the problem is distributed in neurons and con-
ections weights of links between neurons. The neural network
ust be trained to adjust the connection weights and biases in

rder to produce the desired mapping. At the training stage, the
eature vectors are applied as input to the network and the net-
ork adjusts its variable parameters, the weights and biases, to

apture the relationship between the input patterns and outputs.
NNs are particularly useful for complex pattern recognition

nd classification tasks. The capability of learning from exam-
les, the ability to reproduce arbitrary non-linear functions of
nput, and the highly parallel and regular structure of ANN make
hem especially suitable for pattern classification tasks (Fausett,
994; Haykin, 1994; Basheer and Hajmeer, 2000).

ANNs are widely used in the biomedical field for modelling,
ata analysis and diagnostic classification (Alkan et al., 2005;
ubasi, 2005; Subasi and Ercelebi, 2005). The most frequently
sed training algorithm in classification problems is the back-
ropagation (BP) algorithm, which is used in this work also.
here are many different types and architectures of neural net-
orks varying fundamentally in the way they learn; the details
f which are well documented in the literature (Dreiseitl and
hno-Machado, 2002). In this paper, two neural networks rel-

vant to the application being considered, i.e., classification of
MG data will be employed for designing classifiers; namely

he FEBANN and WNN.

.3.1. Wavelet neural networks
Wavelet neural networks (WNN) is a new network based on

avelet transform (Pati and Krishnaparasad, 1993), in which

iscrete wavelet function is used as the node activation func-
ion. Because the wavelet space is used as characteristic space
f pattern recognition, the characteristic extraction of signal
s realized by weighted sum of inner product of wavelet base

w
t
i
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nd signal vector. Furthermore, because it combines the func-
ion of time–frequency localization by wavelet transform and
elf-studying by neural network, the network possesses doughty
apacity of approximate and robust. In this paper, a WNN was
esigned with mono-hidden-layer forward neural network with
ts node activation function based on dyadic discrete Morlet
avelet basic function (Subasi et al., 2005). The Morlet trans-

orm was able to unambiguously locate three classes. Signifi-
antly, we were able to limit the set of interrogated scales to
xclude those that correspond to structural features of the EMG.
ote that the pattern of background noise in the Morlet was

imilar across all EMG signals.
Wavelet transforms have emerged as a means of represent-

ng a function in a manner that readily reveals properties of the
unction in localized regions of the joint time–frequency space.
he applications of WNN are usually limited to problems of
mall input dimension. The main reason is that they are com-
osed of regularly dilated and translated wavelets. The number
f wavelets in the WNNs drastically increases with the dimen-
ion (Zhang, 1997). Some work has been done on reducing the
ize of the WNN by removing the redundant candidates (Wong
nd Leung, 1998; Xu and Ho, 2002). Galvao et al. (2004) worked
ecently on the use of wavelet neural networks as a non-linear
egression structure using high dimensional data.

A wavelet ψj(x) is derived from its mother wavelet ψ(z) by
he relation

j(x) = ψ

(
x− mj

dj

)
= ψ(zj) (3)

here the translation factor mj and the dilation factor dj are
eal numbers in � and �*, respectively. The family of functions
enerated by ψ can be described

c =
{

1√
dj
ψ

(
x− mj

dj

)
, mj ∈ � and dj ∈ �∗

}
(4)

family Ωc is said to be a frame of L2(�) if there exists two
onstants c > 0 and c < +∞ such that for any square integrable
unction f, the following inequalities hold:

||f ||2 ≤
∑
j

ψj ∈Ωc

|〈ψj, f 〉|2 ≤ C||f ||2 (5)

here ||f|| denotes the norm of function f and 〈f, g〉 the inner
roduct of functions f and g. Families of wavelet frames of L2(�)
re universal approximators.

For the modelling of multivariable processes, multi-
imensional wavelets must be defined. In the present work, we
se multidimensional wavelets constructed as the product of Ni

calar wavelets (Ni being the number of variables)

j(x) =
Ni∏
ψ(zjk) with zjk = x− mjk

d
, (6)
k=1

here mj and dj are the translation and dilation vectors, respec-
ively. Families of multidimensional wavelets generated accord-
ng to this scheme have been shown to be frames of L2(�Ni )
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In order to make the neural network training more efficient, the
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Oussar et al., 1998). Wavelet networks were presented in the
ramework of static modelling architecture, where the network
utput y is computed as

= y(x) =
Nw∑
j=1

cjΨj(x) +
Nj∑
k=0

bkxk. (7)

t can be viewed as a network with an input vector of Ni com-
onents, a layer of Nw weighted multidimensional wavelets and
linear output neuron. The coefficients of the linear part of the
etworks would be called direct connections.

Wavelet network training consists in minimizing the usual
east-squares cost function

(θ) = 1

2

N∑
n=1

(ynp − yn)2
, (8)

here vector θ includes all network parameters to be estimated:
ranslations, dilations, weights of the connections between
avelets and output and weights of the direct connections; N

s the number of elements of the training set, ynp is the output of
he process for example n and yn is the corresponding network
utput.

In the framework of the discrete wavelet transform, a family
f wavelets can be defined as

d = {αm/2ψ(αmx− nβ), (m, n) ∈Z2}, (9)

here α and β are constants that fully determine, together with
he mother wavelet ψ, the family Ωd. Actually, relation (9) can
e considered as a special case of relation (4), where

mj = nα−mβ
dj = α−m , (10)

hese relations show that, unlike the continuous approach,
avelet parameters cannot be varied continuously; therefore,
radient-based techniques cannot be used to adjust them. Gener-
lly, training wavelet networks stemming from the discrete trans-
orm (Zhang and Benveniste, 1992; Zhang, 1997) is performed
sing the Gram–Schmidt selection method. This approach usu-
lly generates large networks, which are less parsimonious than
hose trained by gradient-based techniques. This may be a draw-
ack for many applications (Oussar et al., 1998).

.3.2. Wavelet neural network classifier
Wavelets offer many attractive features for the analysis of

hysical signals, including universal approximation properties,
obustness against coefficient errors (Daubechies, 1992), and
oint input-space/frequency localization. Since EMG signals
ossess a combination of slow variations over long periods, with
harp, transient variations over short periods, WNNs seem to be
more natural choice than other mainstream neural networks

or EMG analysis. A multidimensional wavelet Ψ (zjk) can be

nduced from a scalar wavelet Ψ (z) via an affine vector–matrix
ransformation of the input x (Zhang and Benveniste, 1992). We
ave introduced a variation to this idea for obtaining multidi-
ensional wavelets that are radially symmetric with respect to

i
r
h
o

Fig. 5. A wavelet neural network model.

-dimensional translation vectors k, by dilating the Euclidean
istance between input and translation vectors:

(zjk) =
√
jnψ(j||x− k||), j ≤ 0 (11)

e are interested in the non-linearities introduced by the WNN
nly to the extent that they can improve a function approxima-
ion. Therefore, the WNN is equipped with a linear discrimi-
ant portion that can quickly account for a linear trend in the
nput/output data. The wavelet nodes are specifically trained to
pproximate only the “wave-like” components in the function.
he resulting WNN classifier is shown in Fig. 5. For a detailed
resentation of this method see Oussar and Dreyfus (2000) and
ubasi et al. (2005).

.3.3. Selection of network parameters
For solving the pattern classification problem, we used ANN

mploying back-propagation training algorithm. The advantages
f this type of neural network are effective training algorithm
nd better understanding of the system behaviour. Selection of
etwork input parameters and performance of neural network
re important to distinguish between normal (NOR), myopathic
MYO) and neurogenic (NEU) subjects.

When using a neural network, decisions must be taken on how
o divide data into a training set and a test set. In this study, 18 of
7 subjects were used for training and the rest of them were used
or testing. In order to obtain a better network generalization five
raining subjects were used as cross-validation set.

The classification scheme of 1-of-C coding has been used for
lassifying the signal into one of the output categories. For each
ype of EMG signals, a corresponding output class is associated.
he feature vector set, x represents the ANN inputs, and the
orresponding class, once coded, constitutes the ANN outputs.
nput feature vectors were normalized so that they fall in the
ange [0,1.0]. Since the number of output classes is 3, the ANN
as three outputs, which produce a code for each class. The
utputs are represented by basis vectors:
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Table 1
Class distribution of the samples in the training and test data sets

Class Training set Test set Total

Normal 300 100 400
Myopathic 300 100 400
N
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[0.9 0.1 0.1] = normal (NOR);
[0.1 0.9 0.1] = myopathy (MYO);
[0.1 0.1 0.9] = neurogenic (NEU).

Each dummy variable is given the value 0.1 except for the one
orresponding to the correct category, which is given the value
.9. Using target values of 0.1 and 0.9 instead of the common
ractice of 0 and 1 prevents the outputs of the network from being
irectly interpretable as posterior probabilities (Kandaswamy et
l., 2004). The output vector associated to the modified input
ector xk, k = 1, 2,. . ., K is noted yk, with K the number of EMG
ignals (Subasi, 2005).

.3.4. Cross validation
Cross validation (CV) (Basheer and Hajmeer, 2000;

aselsteiner and Pfurtscheller, 2000) is often used for compar-
ng two or more learning ANN models to estimate which model
ill perform the best for the problem at hand. With n-fold CV,

he available data is partitioned into n disjoint subsets, the union
f which is equal to the original set. Each learning model is
rained on n − 1 of the available subsets, and then tested on the
ne subset, which was not used during training. This process is
epeated n times, each time using a different test set chosen from
he n available partitions of the training data, until all possible
hoices for the test set have been exhausted. The n test set scores
or each learning model are then averaged, and the model with
he highest average test set score is chosen as the one most likely
o perform well on unseen data (Sureshbabu and Farrell, 1999).

.3.5. Measuring error
Given a random set of initial weights, the outputs of the net-

ork will be very different from the desired classifications. As
he network is trained, the weights of the system are continu-
lly adjusted to reduce the difference between the output of the
ystem and the desired response. The difference is referred to as
he error and can be measured in several ways. The most com-

on measurement is SSE and MSE. SSE is the average of the
quares of the difference between each output and the desired
utput (Fausett, 1994; Haykin, 1994; Basheer and Hajmeer,
000; Haselsteiner and Pfurtscheller, 2000). In this study, mean
quared error (MSE) was used for measuring performance of the
eural network.

.4. Development of ANN model

The purpose of the modelling phase in this application was to
uild up classifiers that are able to identify any input combination
s belonging to either one of the three classes: normal, myopathic
r neurogenic. For developing the neural network classifiers, 600
xamples were randomly taken from the 900 examples and used
or training the neural networks. The remaining 300 examples
ere kept aside and used for testing the validity of the developed
odels. The class distribution of the samples in the training and
esting data set is summarized in Table 1.
The FEBANN was designed with AR spectrum of EMG sig-

al in the input layer; and the output layer consisted of three
odes representing normal, myopathic or neurogenic disorder.

M
a
a
f

eurogenic 300 100 400

otal 900 300 1200

he beginning architecture of the network was examined using
ne and two hidden layers with a variable number of hidden
odes in each. It was found that one hidden layer is adequate for
he problem at hand. Hence, the required network will contain
hree layers of nodes. The training procedure started with one
idden node in the hidden layer, followed by training on the train-
ng data (600 data sets), and then by testing on the validation data
300 data sets) to examine the network’s prediction performance
n cases never used in its development. Then, the same proce-
ure was run repetitively each time the network was expanded
y adding one more node to the hidden layer, until the best archi-
ecture and set of connection weights were obtained. Using the
odified error–backpropagation algorithm for training, a train-

ng rate of 0.001 and momentum coefficient of 0.95 was found
ptimum for training the network with various topologies. The
election of the optimal network was based on monitoring the
ariation of error and some accuracy parameters as the network
as expanded in the hidden layer size and for each training cycle.
he mean of squares of error representing the mean of square
f deviations of ANN solution (output) from the true (target)
alues for both the training and test sets was used for selecting
he optimal network. A computer program that we have written
or the training algorithm based on backpropagation of error was
sed to develop the FEBANNs.

According to the theory, the number of nodes in the hidden
ayer of the network is equal to that of wavelet base. If the num-
er is too small, WNN may not reflect the complex function
elationship between input data and output value. On the con-
rary, a large number may create such a complex network that

ight lead to a very large output error caused by over-fitting
f the training sample. It was noticed that the best performance
as obtained for the training set, validation test set, and separate

est set with those models whose hidden layer had 50 neurons
r more. Thus the optimum number of neurons required in the
idden layer is 50.

. Results and discussion

The decomposition of real EMG signals into their constituent
UPs and their classification into groups of similar shapes is a

ypical supervised learning pattern classification problem. The
umber of MUP classes composing the EMG signal, the num-
er of MUPs per class, and the shape of the MUP waveforms
re unknown. The problem gets even more complex because of

UP waveform inconsistency, jitter of single fiber potentials

nd MUP superpositions. Any computerized method for EMG
nalysis should necessitate no operator involvement; should be
ast, robust and reliable; and achieve high success rate in order
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o be of clinical use. EMG data collected from 27 subjects were
nalyzed using the FEBANN and WNN. Data were recorded
rom 7 normal (NOR) subjects, 7 subjects suffering from myopa-
hy (MYO) and 13 subjects suffering from neurogenic (NEU)
isorder. Diagnostic criteria were based on clinical opinion, bio-
hemical data or muscle biopsy. Only subjects with no history
r signs of neuromuscular disorders were considered as normal.

.1. Results of classification experiments

The computed AR spectrums were used as the inputs of the
EBANNs employed in the architecture of WNN. For each EMG
ignal frame (1024 samples) AR power spectral density were
omputed. In this application, there were three classes: healthy,
yopathy and neurogenic. Classification results of the WNN
ere displayed by a confusion matrix. The confusion matrix

howing the classification results of the WNN is given below.

onfusion matrix

utput/desired Result
(normal)

Result
(myopathic)

Result
(neurogenic)

esult (normal) 94 3 3
esult (myopathic) 8 92 0
esult (neurogenic) 11 3 86

According to the confusion matrix, 6 healthy subject was
lassified incorrectly by the WNN as a subject suffering from
yopathy and neurogenic disorder, 14 neurogenic subject was

lassified as a normal or subject suffering from myopathy and 8
ubject suffering from myopathy was classified as a normal.

The test performance of the WNN was determined by the
omputation of the following parameters:

Specificity: number of correct classified healthy subjects/
number of total healthy subjects.
Sensitivity (myopathy): number of correct classified subjects
suffering from myopathy/number of total subjects suffering
from myopathy.
Sensitivity (neurogenic): number of correct classified subjects
suffering from neurogenic disorder/number of total subjects
suffering from neurogenic disorder.
Total classification accuracy: number of correct classified sub-
jects/number of total subjects.
he values of these statistical parameters are given in Table 2.
s it is seen from Table 2, the WNN classified healthy sub-

ects, subjects suffering from myopathy and subjects suffer-
ng from neurogenic disorder with the accuracy of 94%, 92%,

able 2
omparison of FEBANN and WNN models for EMG signal classification

tatistical parameters FEBANN (%) WNN (%)

pecificity 91 94
ensitivity (myopathic) 89 92
ensitivity (neurogenic) 84 86
otal classification accuracy 88 90
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6%, respectively. The healthy subjects, subjects suffering from
yopathy, and subjects suffering from neurogenic disorder were

lassified with the accuracy of 90.7%. The correct classification
ates of the FEBANN were 91% for healthy subjects, 89% for
ubjects having myopathy and 84% for subjects having neuro-
enic disorder. Thus, the accuracy rates of the WNN presented
or this application were found to be higher than that of the
EBANN.

Table 2 shows the classification success rate on 300 MUPs,
btained from EMG recordings. The classification success rate
as defined as the percentage ratio of the correctly identified
UP classes by the classifiers and the number of true MUP

lasses present in the signal as identified by an experienced
europhysiologist. The average success rate for the WNN was
0.7% and for the FEBANN technique 88%. Examining the
lassification success rate for each class, the highest success
ate was obtained for the NOR group and the lowest for the
EU group. This was the case for two ANN. The lowest suc-

ess rate for the NEU group is attributed to the more complex
nd variable waveform shapes. In addition, as shown in Table 2,
he WNN improved significantly the success rate for the NEU
roup compared to the FEBANN. In general, where two classi-
cation methods unsuccessful to categorize a MUP class, it was
ue to waveform variability. In some rare cases, MUP classes
ith very similar shapes were grouped together.
The testing performance of the neural network diagnostic

ystem is found to be satisfactory and we think that this system
an be used in clinical studies in the future after it is developed.
his application brings objectivity to the evaluation of EMG sig-
als and its automated nature makes it easy to be used in clinical
ractice. Besides the feasibility of a real-time implementation
f the expert diagnosis system, diagnosis may be made more
ccurately by increasing the variety and the number of param-
ters. A “black box” device that may be developed as a result
f this study may provide feedback to the neurophysiologists
or classification of the EMG signals quickly and accurately by
xamining the EMG signals with real-time implementation.

. Conclusions

The presented work for decomposing and classifying EMG
ignals is capable of extracting useful clinical information from
imultaneously acquired EMG signals. Based on a set of EMG
ignals used for evaluation it was demonstrated that WNN clas-
ify the subjects with sufficient accuracy and speed to provide
linically useful parameter values relating to detailed aspects of
he structure and function of the motor units of a muscle. An
rtificial neural network that classifies patients as having or not
aving neuromuscular disorders provides a valuable diagnostic
ecision support tool for physicians. We developed a wavelet
eural network for classifying neuromuscular disorders of full
pectrum EMG recordings. This novel method uses AR spec-
rum of EMG as the input to a wavelet neural network with

hree discrete outputs: normal, myopathic and neurogenic.

In conclusion, the pattern classification techniques as
escribed in this work make possible the development of a
ully automated EMG signal analysis system which is accurate,
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imple, fast and reliable enough to be used in routine clinical
nvironment. Future work will evaluate the algorithms devel-
ped in this study may be integrated into a hybrid diagnostic
ystem for neuromuscular diseases based on ANN where EMG,
uscle biopsy, biochemical and molecular genetic findings, and

linical data may be combined to provide a diagnosis.
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