Reliability Engineering and System Safety 111 (2013) 154-163

Reliability Engineering and System Safety 72

journal homepage: www.elsevier.com/locate/ress e

Contents lists available at SciVerse ScienceDirect ENGINEERING
& SYSTEM
SAFETY

o RELIABILITY
NEERIT

T

Efficient exact optimization of multi-objective redundancy allocation
problems in series-parallel systems

Dingzhou Cao, Alper Murat, Ratna Babu Chinnam *

Industrial & Systems Engineering Department, Wayne State University, Detroit, MI 48202, USA

ARTICLE INFO

Article history:

Received 9 January 2012

Received in revised form

19 September 2012

Accepted 25 September 2012
Available online 7 November 2012

Keywords:

Redundancy allocation problem
Multi-objective optimization
Decomposition

Series-parallel systems

ABSTRACT

This paper proposes a decomposition-based approach to exactly solve the multi-objective Redundancy
Allocation Problem for series-parallel systems. Redundancy allocation problem is a form of reliability
optimization and has been the subject of many prior studies. The majority of these earlier studies treat
redundancy allocation problem as a single objective problem maximizing the system reliability or
minimizing the cost given certain constraints. The few studies that treated redundancy allocation
problem as a multi-objective optimization problem relied on meta-heuristic solution approaches.
However, meta-heuristic approaches have significant limitations: they do not guarantee that Pareto
points are optimal and, more importantly, they may not identify all the Pareto-optimal points. In this
paper, we treat redundancy allocation problem as a multi-objective problem, as is typical in practice.
We decompose the original problem into several multi-objective sub-problems, efficiently and exactly
solve sub-problems, and then systematically combine the solutions. The decomposition-based
approach can efficiently generate all the Pareto-optimal solutions for redundancy allocation problems.
Experimental results demonstrate the effectiveness and efficiency of the proposed method over meta-

heuristic methods on a numerical example taken from the literature.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The redundancy allocation problem (RAP) is a well-known
problem in the “design-for-reliability” literature. It has a broad
application in the real-world, such as electrical power systems
design [1], transportation systems design [2], and telecommuni-
cations design [3]. The reliability of a system can be increased by
allocating redundancies to its subsystems, but this can also
increase the design cost and may negatively affect other con-
siderations (such as system weight and volume). The objective of
RAP is to determine optimal system designs that maximize
system reliability and other considerations given certain con-
straints on the system.

In the past several decades, there have been a number of studies
and approaches to the RAP. Roughly, they can be grouped into three
methods: (1) single objective optimization with constraints,
(2) aggregated objective function for multi-objective optimization,
and (3) Pareto-based ranking for multi-objective optimization. The
first set of methods treat the RAP as a single objective optimization
problem (maximizing system reliability or minimizing cost) with
constraints. Various single-objective optimization approaches have
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been used to solve such formulations, including dynamic program-
ming [4-6], integer programming [7-9], mixed integer and non-
linear programming [16], column generation method [17], and
meta-heuristics [10-15]. These single-objective optimization tech-
niques have their own advantages. However, in practical applica-
tions, multiple considerations must be taken into account when
determining the redundancy allocation of the system (e.g., when it
is important to have high system reliability and low design cost).
The aggregated objective function method can be implemented to
solve this problem by summing the multiple objective functions
into a single objective function. Then the new objective function
can be solved using a single-objective optimization approach.
Studies in [18-22] use this method. For example, Dhingra [18]
presented a multi-objective reliability apportionment problem.
However, [18] solved a multi-objective, nonlinear, mixed-integer
mathematical programming problem by sequential unconstrained
minimization techniques in conjunction with heuristic algorithms.
The parallel-series system considered in this study included time-
dependent reliability. The study in [19] provided an efficient
computational method to obtain the optimal system structure of
electronic devices by using a single or a multi-objective simulated
annealing algorithm based optimization approach. Studies [20-22]
used multi-criteria formulations with genetic algorithm (GA). The
approach in [21] was based on GA and Monte Carlo simulation;
while in [22] GA and physical programming were combined to
solve the RAP.
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The above studies involving multiple objectives made important
contributions toward finding more effective and efficient approaches
for RAP. However, aggregating multiple objectives into a single
objective to obtain promising results is a challenge as the scaling
process necessary to normalize the objective space might affect the
set of Pareto solutions found. In addition, the aggregation of multiple
objectives may eliminate the possibility of identifying some non-
dominated solutions [32]. To cope with these drawbacks, other multi-
objective optimization approaches have been proposed. Multi-
objective optimization refers to the process of solving problems with
two or more objectives to be simultaneously optimized. Unlike the
single-objective optimization problem, multi-objective optimization
problems usually have a set of solutions called Pareto-optimal (i.e.,
non-dominated) solutions (e.g., [23-26]). In [23], the authors for-
mulated the RAP as a tri-objective problem (i.e., maximize reliability,
minimize cost and weight) and solved this problem using the Non-
dominated Sorting Genetic Algorithm (NSGA2) originally proposed
by Deb et al. [27]. In [24], the same authors from [23] presented
an improved version of NSGA2 called MOMS-GA to solve the
tri-objective redundancy allocation problem in multi-state systems.
Authors of [25] employed a Tabu search and Monte-Carlo simulation
method to solve the bi-objective (reliability and cost) redundancy
allocation problem. In [26], authors employed a problem-specific
evolutionary algorithm to solve the continuous reliability optimiza-
tion problems where the decision variables are the reliabilities of the
components.

The meta-heuristic based optimization approaches mentioned
above are very popular for solving multi-objective RAP. However,
meta-heuristic based approaches have several limitations: they do
not guarantee that Pareto points are optimal; they may not identify
all the Pareto-optimal points, and they may become computation-
ally cumbersome, e.g., large population sizes in GA. In this paper,
we regard RAP as a multi-objective problem and propose a decom-
position driven approach to address these limitations.

A key step of the proposed approach is the exact solution of
multi-objective sub-problems to generate the whole set of non-
dominated solutions. The e -constraint method [28] is a classical
method to generate whole set of non-dominated solutions, but it is
generally computationally impractical for large problems. To
improve the computational efficiency of the e -constraint method,
an adaptive e -constraint method [29] was proposed for multi-
objective combinatorial optimization problems and requires inte-
gral objective function values. While this method is more efficient
than the traditional e -constraint method, it identifies many
duplicate solutions, affecting the efficiency of the algorithm. To
solve the multi-objective sub-problems exactly, we modify the
adaptive e -constraint method to account for continuous objective
values (due to reliability objective) and greatly reduce the need to
solve problems with duplicate solutions.

The rest of this paper is organized as follows: Section 2.1
presents the multi-objective redundancy allocation problem
for series-parallel systems. The proposed decomposition driven
approach for multi-objective RAP is described in Section 2.2. The

modified adaptive e -constraint method is presented in Section
2.3. The proposed method is applied to a numerical example in
Section 3. Finally, the paper concludes with summary and direc-
tions for future research.

2. Decomposition-based solution framework for
multi-objective RAP in series-parallel systems

We first briefly introduce the multi-objective RAP for series-
parallel systems. Next we describe the decomposition-based
approach and its properties. Lastly, we present an efficient
method to generate the whole set of non-dominated solutions.

2.1. Redundancy allocation problem for series-parallel systems

A series-parallel system has a total of s independent subsystems
arranged in series; for the ith subsystem, it can have up to nygy;
functionally equivalent components arranged in parallel. Each
component potentially varies in reliability, cost, weight and other
characteristics. A subsystem can work properly if at least one of its
components is operational. The n; components are selected from
m; available component types where multiple copies of each type
can be selected. The typical structure of a series-parallel system is
illustrated in Fig. 1. Increasing the number of redundant compo-
nents will increase the system reliability, but that also increases its
cost and weight. The goal is to optimally allocate the redundant
components while balancing multiple competing objectives.

Without loss of generality, we restrict our attention in the rest of
this manuscript to reliability, cost, and weight considerations in RAP.
It is straightforward to incorporate additional characteristics as long
as they are linear in decision variables (i.e., the number of compo-
nents of a certain type used in each subsystem). We note here that
reliability is not linear in decision variables; however, we overcome
this difficulty through a transformation discussed in Section 2.2.

We formulate the RAP in a multi-objective setting with
reliability, cost and weight considerations as:

(RAP)
maxfg(x), minf¢(X), minfy,(x) (1)
s.t
1< Z}'."; L Xij < Mmaxi Vi€S, )
X={xj|VieS, j=1,...m;} and x; € {0,1,2,.. ,Npax; }, 3)
where,

i= j=1

fr (0= [H (1— 11 (1—rfj)””)}v @)

©

S

fex) = {Z i cﬁxij},and fwx) = [Z leijxij:|~ 5)

i=1j=1 i=1j=1

Subsystem, Subsystem,, —l — Subsystemg, —
— Subsystem,, Subsystem,,}—— Subsystemg,
Subsystemy,, Subsystemsn,, — Subsystemg, [—

Fig. 1. General series-parallel redundancy system.
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The set S denotes the set of subsystems and s=|S| is the number of
subsystems; x; is the decision variable denoting the number of jth
type components used in subsystem i; m; denotes the number of
available component types for subsystem i; n.; denotes the
maximum number of components in parallel used in subsystem i.
The parameters ry; ¢ and wy denote the reliability, cost, and weight
of the jth available component type for subsystem i, respectively.
Eq. (5) implicitly assumes that the overall system weight and cost
criteria are linear and additive which holds in most practical
applications.

The solutions to the multi-objective RAP is a set of Pareto-
optimal (non-dominated) solutions. Pareto-optimal solutions are
those for which improvement in one objective can only occur with
the worsening of at least one other objective. Thus, instead of a
unique solution to the problem, the solution of a multi-objective
optimization problem is a set of Pareto-optimal solutions. These
solutions are characterized in terms of non-dominance relationship
in the objective space and efficiency in the decision space [32]. In a
minimization problem, the non-dominance relationship can be
defined as follows solution x; is more efficient than solution X, if
and only if: (a) x; is no worse than x, in all objectives, i.e.,
frx1) <fr(X2)V ke (1,2, ...,n}; and (b) X, is strictly better than x,
in at least one objective, i.e., fi(X;)<fi(Xz) for atleast one k.
Accordingly, if x; is more efficient than solution x,, the objective
vector corresponding to X; dominates that of x,.

2.2. Decomposition approach

In solving multi-objective RAP problems, decomposing the
original problem into sub-problems and systematically combining
the solutions can greatly improve the efficiency of constructing the
Pareto-optimal solution set for the original problem. The proposed

Given:

Generate
the Pareto
Set for Each
Subsystem

decomposition-based solution framework is illustrated in Fig. 2.
We first summarize the three phases of this approach below and
then provide details in the remainder.

Phase 1. —Linearization and decomposition: We decompose the
multi-objective RAP formulation in Section 2.1 into smaller multi-
criteria sub-problems corresponding to each subsystem. This is
achieved through by first linearizing the reliability objective and
then decomposing the resulting formulation into individual sub-
system multi-objective RAPs. The equivalence of the linearized
reliability objective is established in Proposition 1.

Phase 2. —Pareto set generation for each subsystem: Next, we
solve each subsystem’s multi-objective RAP using an exact effi-
cient Pareto set generation method presented in Section 2.3 so as
to identify all the non-dominated solutions for each sub-problem.
Proposition 2 establishes that any non-dominated solution for the
original multi-objective RAP (e.g., integrated system) can be
obtained as a combination of the non-dominated solutions for
sub-system multi-objective RAPs.

Phase 3. —Sequential combination and filtering: As shown in
Proposition 3, combining non-dominated subsystem solutions could
result in dominated solutions for the multi-objective RAP of the
integrated system. Hence, we sequentially combine the non-
dominated solution sets of consecutive sub-problem pairs while
filtering out the dominated solutions. This sequential combining
and filtering continues until a single non-dominated solution set
remains. Proposition 4 establishes that sequential combination and
filtering does not eliminate any non-dominated solution for the
original multi-objective RAP.

The decomposition benefits computational efficiency in two ways.
First, the solution of decomposed problems is much easier than

( Decompose Whole System into Several Subsystems )

Phase 1.

Linearization &

I

T

&
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and Filtering 11 n 11

Sequentially Combine and Filter Pareto Optimal Set for Each Consecutive-Pair of Solution Sets;
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‘ Pareto Optimal Set for Whole System |

Fig. 2. Decomposition based solution framework of multi-objective RAP problems.
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solving the integrated system problem. Secondly, the decomposition
greatly facilitates the generation of the whole Pareto-optimal solution
set by removing those dominated subsystem solutions early on
during the sequential combining and filtering process. In what
follows, we describe the details of the decomposition based approach.
First, we describe a linearization approach for reliability objective,
which allows us to decompose the multi-objective RAP into series-
parallel systems (Phase 1, Fig. 2).

The RAP formulation presented in Section 2.1 is decomposable by
subsystems except for the reliability objective. To make the reliability
objective decomposable, we apply a logarithmic transformation to
the reliability objective function in (4). The maximization of the
product of reliability of all subsystems then becomes the maximiza-
tion of the summation of logarithm of all subsystems’ reliabilities.

max fg;(X) = {Z log (1— H (1—rij)x*f)}. (6)
=1 i1

The following proposition establishes that solutions to max f(x) and
max fr,(X), subject to the affine constraints in (2), are equivalent.

Proposition 1. The solutions of maxfy(x) and maxfy,(X) subject
to constraint set (2) are identical.

Proof: The fg is monotone increasing in x; when r;; >0 for all i
and j. The fr; is obtained through the logarithmic transformation,
which is a monotonic transformation and preserves the rank order
of the solutions, e.g., if fr(x) > fr(x’) then we have fr{(X) > fr1(X').
Further, the constraint set (2) is affine, hence does not change the
rank order of feasible solutions. Therefore, a solution X maximizing
fr(x) subject to (2) also maximizes fr(x) subject to (2).

Through this monotonic transformation, we can then decom-
pose the reliability objective by subsystems and solve each
subsystem’s reliability maximization independently (Phase 2,
Fig. 2).

max fra(X;) = {log (1— H (l—r,-j)"*fﬂvies, (7)

=1

where x; = {x;| j=1,...,m;} is a solution for subsystem i.

Further, due to the monotonicity of logarithmic function, the
maximization of the objective in (7) can be transformed to the
following minimization objective while preserving the rank order
of solutions:

minfgs(X;) = {log ( H (1 —r,-j)x’j) } Vies, (8)
i

e

[Z log(l—rij)xij} Vies. 9

=1

We also note that the constraint set (2) and the weight and cost
criteria in (5) are decomposable by subsystems, e.g., fc(X;) =
D5 4 cixil and fuy (%) =[] | wyxi].

There are several properties of the non-dominated solutions for
the subsystem RAPs obtained through the proposed decomposition
approach (Phase 2, Fig. 2). First property is concerned with whether
the entire set of non-dominated solutions of the RAP can be
obtained by solving decomposed subsystem problems. The follow-
ing proposition establishes that any solution in the RAP’s Pareto set
can be obtained by Cartesian combining the individual subsystem’s
Pareto sets. In other words, the decomposition approach does not
leave out any non-dominated solution of the RAP.

Proposition 2. Any non-dominated solution to the RAP problem
can be obtained through Cartesian combining the non-dominated
solutions of subsystems.

Proof: Proof is by contradiction. Without loss of generality, let
us consider the case with two objectives k={01,0,} and a decom-
posable problem by subsystems. The integrated problem is
{minf, (x), minf,,(X)|xeX} and f, = > foi and X=UjcsX;. The
ith sub-problem as a result of the decofmposition is then {minf, ;
(xi), minf, ;(Xj)|X; €X;}. Denote P as the set of non-dominated
solutions of the integrated problem, e.g., f; = (f5,.f5,). Further
denote the set of non-dominated solutions of the ith subsystem as
Pgi, e.g., foi=(f5 ifs,)- Let us assume that there exists a non-
dominated solution x'eP which is not in the combination non-
dominated solution set obtained by,

x Pyjs))s

where the operator x is the Cartesian combination of the non-
dominated solution sets and Fouriertrf; represents the Pareto filter
for dominated solutions in the combination set A ;Py. Since X' is a
solution in P, we have f,, x)<f 0, (X)  Vx¢P for atleast an objective
k and the rest is fo x) fo x) for allk k. Without loss of
generality, lets also assume that we have two subsystems, e.g.,
S={1,2}. Then X' =(x'1,X'2)eP implies f, (X) < f,, (X) or alternatively
Fo (X)) +fo, (X4) <fo,(X1)+f,,(X2) for atleast one objective. The last
expression can be satisfied under the following four scenarios:

P4 = Fouriertrf;(Pg; x ...

i fo, (%)) <fo, (1) and fo, (%) < fo,(X2)
ii. fo, (X7) <fo,(X1) and f,, (X5) < f,,(X2)
iii. fo, (X;) >f,,(X1) and f,, (x5) <f,, (X2)
V. fo, (X)) <fo, (1) and fo, (%) > fo,(X2)

We now show that, for each scenario, there cannot be an x’' e P but
X ¢Py. Scenarios (i) and (ii) are trivial, since the Py; and Ps, would
include x’; and X',X', or better subsystem solutions with respect to
objective k. The former case is a contradiction to the assumption of
X ¢Py. The latter case is a contradiction to the assumption of x’' P
since a better solution implies the dominance of x'. In scenarios
(iii) and (iv), there is a solution which is better than X/, i.e., (X1,X2)
and (x'1,X;), respectively, both of which dominate x'. This is a
contradiction to the original assumption of X’ eP.

The above property ensures that any non-dominated solution
of the RAP can be obtained by Cartesian combining the Pareto sets
of subsystems. In other words, the decomposition based approach
does not leave out any non-dominated solution to the RAP.
However, some of the solutions obtained through Cartesian
combinations could be dominated as established by the following
proposition (Phase 3, Fig. 2).

Proposition 3. Solutions obtained by Cartesian combining the
Pareto sets of subsystems can be dominated.

Proof: Without loss of generality, we demonstrate this through an
example with two subsystems and two objectives. Consider the
following non-dominated solution sets for subsystem 1 and 2:
(f5, X1).f5,(x1)) = {(3,5).(2,6),(4, 1)} and (5, (x2).f5,(%2) = {(2,5),
(4,3),(1,7)}. The Cartesian combination results in 9 solutions and
4 of these solutions are dominated by the remainder. For instance, the
solution obtained by combining 1st solution of subsystem 1 (3,5) and
2nd solution of subsystem 2 (4,3) is (7,8), which is dominated by the
solution (6,6) obtained by combining 3rd solution of subsystem 1
(4,1) and 1st solution of subsystem 2 (2,5). Hence, the Cartesian
combination of the non-dominated solutions of multiple subsystems
can result in dominated solutions.

In order to maintain the computational efficiency, the decom-
position based approach in Fig. 2 alternates between the Cartesian
combining and Pareto filtering steps, e.g., filtering out dominated
solutions in smaller sets rather than all at once (Phase 3, Fig. 2).
The following proposition establishes that this sequential com-
bining and filtering process does eliminate any non-dominated
solution of the RAP.



158 D. Cao et al. / Reliability Engineering and System Safety 111 (2013) 154-163

Proposition 4. Cartesian combining non-dominated solution sets
and filtering out dominated solutions does not result in failure to
identify any non-dominated solutions for the RAP.

Proof: We prove by contradiction. Lets consider the case with
three subsystems and X' is a solution in RAP’s Pareto set P, then we
have f, () <f, (X) Vx¢£P for atleast an objective k and the rest is
fo,X)=f,,x) for all k' # k. For three subsystem case, this is
equivalent to,

fﬂk (X/]) +f0k (X/Z) +f0k (X/3) <fok(xl)+fok(x2)+fok(x3)-

Lets consider that f, (x})+f,, (X;) is dominated by solution X" =
(x"1,x'%) in the Cartesian combination of subsystem 1 and 2, e.g,
fo (X)) +fo, (X5) > fo, (X) +f,, (X%). Hence, solution X =(X1,X5)
will be filtered out and will not appear in the final solution set.
However, the solution X” = (x"1,X’,) combined with x’; will dominate
X" e'g" fﬂk (xll) +f0k (X/Z) +f0k (Xé) >f0k (x”l) +f0k (XHZ) +f0k (x,3)
Hence X' cannot be in RAP’s Pareto set P, which is a contradiction.

In summary, the decomposition approach determines all the
non-dominated solutions of subsystems individually. Proposition
2 guarantees that every solution in the Pareto-optimal set of RAP
can be constructed as a Cartesian combination of a non-
dominated solution of each subsystems. Proposition 3 establishes
that the Cartesian combinations can lead to dominated solutions
which needs to be filtered out. Lastly, Proposition 4 states that
sequential Cartesian combination and filtering does not eliminate
any non-dominated solution of any subsystem that is part of a
non-dominated solution of the RAP.

The pseudo-code of the algorithm for the decomposition
approach illustrated in Fig. 2 for solving multi-objective RAP of
the integrated system is as follows.

2.2.1. Decomposition approach for multi-objective RAP

Input: S, m;, Nmax,i» Tij» Cj» and wy;.
Output: Set of Pareto-optimal solutions for RAP, P.
1: P=90
2: For each subsystem ieS, solve the following sub-problem and
obtain the Pareto-optimal set for each subsystem, i.e., Pg;:
minfgs(X;), min fc;(Xq), min fy; (X;)
m;
1< '21 Xij < Minax,i
j=
3ti:=1,j:=1,L: =5
4: While flag=1 do
5: Cartesian combine the decisions Py; and Py 1), filter out
dominated solutions and store efficient set
Pgj = Fouriertrf; (Pg x Pyg1))
i:=i+2,j: =j+1
IfL=2
: flag=0
End if
10: Ifi>L and flag=1
11:  i:=1,j:=,L: =[L/2]
12: End if
13: End while
14: P: =Py
15: Return P

o d O

©

The decomposition algorithm Cartesian combines the non-
dominated solution set pairs in Step 5 (Phase 3, Fig. 2). The
parameter L represents the number of non-dominated solution
sets to be combined in each loop (Steps 4-13). The operator [-]
denotes rounding up operation. When the last pair of non-
dominated solution set is combined and filtered (i.e., Step 7),

the algorithm terminates with the Pareto-optimal set P. The above
algorithm combines the non-dominated sets consecutively based
on the subsystem order, e.g., first subsystem 1 and 2, next
subsystem 3 and 4 and so on. However, the order of Cartesian
combining is not important as per Proposition 4. For instance, one
can first combine subsystems 1 and 2 and then combine sub-
system 3 to this set. We also note that the algorithm converges to
a non-empty set since Py; # @ for any j.

The algorithm’s computational performance depends on the
efficiency of obtaining subsystems’ non-dominated sets (Step 2),
the efficiency of the filtering approach (Step 5), and the cardinality of
the Pareto-optimal solution sets obtained through combination and
filtering. By sequentially combining and filtering out the dominated
solutions, we gain efficiency in the filtering task. For instance,
consider the Simple Cull filtering algorithm which has a complexity
of O(p?) where p is the number of solutions in the set [33]. Let p;
denote the number of non-dominated solutions for subsystem i=1,
2, 3, 4. The complexity of the Cartesian combination and filtering is
O(p?p3) for subsystem pair 1 and 2 and is O(p3p3) for subsystem
pair 3 and 4. Let p, and ps4 denote the number of non-dominated
solutions after filtering the subsystem pairs. The filtering complexity
of the Cartesian combination of pi; and pss is O(p%,p%,). In
comparison, Cartesian combination of all four subsystems and then
filtering has complexity of O(p?p2p3p3). The worst case scenario is
realized when all the solutions generated through Cartesian combi-
nations of subsystem pairs are non-dominated, e.g., p12=pip, and
DP34=p3P4. In this case, the complexity of filtering for the decom-
position approach is O(p2p3)+ O(ps 2p3)+0(p3, p,)=0(p?p3)+
0(p2p2) +O0(p3p3pip2) = O(p3p3pip3). ie., approximated equivalent
to that of filtering once. Further, lets consider a stylized scenario
where all subsystems have equal number of non-dominated solu-
tions, p = p; Vi, and the non-dominated solution ratio is p =p2/p*=
P34/p? < 1. In this case, the sequential combining and filtering has
complexity p? of that of the one-time combining and filtering.

For large RAP instances where many components can be
selected from a large set of components, the efficiency of obtain-
ing subsystems’ non-dominated sets becomes a critical determi-
nant of the decomposition based approach for solving multi-
criteria RAP. The available methods for solving multi-objective
optimization problems with non-convex Pareto front can be
categorized into exact and approximate methods. The exact
methods aim to determine the entire set of Pareto-optimal
solutions whereas approximate methods aim to determine an
even representative set of the Pareto set. In addition, the approx-
imate methods are further classified into deterministic and
stochastic approaches based on whether the solutions found are
on the Pareto frontier. Two commonly used deterministic approx-
imate methods are Normal Boundary Intersection (NBI) [34] and
Normal Constraint (NC) [35] methods. While these methods are
shown to be effective for solving large multi-objective optimiza-
tion problems, they are not suitable for solving the subsystems’
sub-problems in the decomposition based approach. This is
because, as stated with Proposition 1, the ability to obtain the
Pareto-optimal set for RAP requires identifying the whole non-
dominated sets for subsystems. Instead, we improve a recently
proposed method called adaptive e -constraint [29], which is
guaranteed to find the whole set of non-dominated solutions. We
compare the decomposition based approach with NSGA2, a
popular stochastic approximation method [27]. The reason for
selecting stochastic approximate method (NSGA2) over determi-
nistic approximate methods (NC or NBI) is to eliminate the need
for solving nonlinear integer programming problems. While the
NSGA2 uses only function evaluations, both NC and NBI would
require solving nonlinear integer problems where the nonlinearity
is due to the reliability objective. We note that it is possible to
linearize the non-linear objective through logarithm transformation



D. Cao et al. / Reliability Engineering and System Safety 111 (2013) 154-163 159

and then solve with either NC or NBI. However, these methods
will generate an even distribution of Pareto optimal points on
the logarithm transformed reliability function space which is not
guaranteed to be evenly distributed in the original reliability
function space.

2.3. Enhanced adaptive e -constraint method

We now describe the Phase 2 of the decomposition-based solution
framework (Fig. 2). The traditional e -constraint method is a multi-
objective optimization technique proposed by Chankong and Haimes
[28] for generating Pareto-optimal solutions and guarantees to find all
non-dominated solutions irrespective of the convexity of the Pareto
front. This method solves a series of single objective problems
of the form minfi(x)s.t.fix)<¢ Vj= 1.2,...m, j#i where
ie{1,2,3,...m} and € =(e1, €3,... €m) are the upper bounds for
each corresponding objective function. These upper bounds are
iteratively increased or decreased by a pre-defined constant A4 along
the Pareto front for each objective. Fig. 3a illustrates the traditional
e -constraint method for bi-objective case.

There are two limitations to the traditional e -constraint method.
First, it is necessary to choose a pre-defined constant A. Since only
one solution can be found in each interval, the discretization has to
be fine enough not to “miss” any Pareto-optimal solution. As shown
in Fig. 3a, the non-dominated solution X4 is missed in iteration 3 due
to the selection of large 4. Second, this method may identify
dominated solutions since it takes only one objective function into
consideration at any time. The selection of solution Xs (dominated by
solution Xg) in Fig. 3a illustrates this scenario.

To cope with the drawbacks of the e -constraint method, Ozlen
and Azizoglu [29] presented an adaptive e -constraint method that
exploits objective efficiency ranges for solving the multi-objective
integer programming (MOIP) problem. Unlike the traditional e -
constraint method that determines e by decreasing a fixed 4 in
each iteration, the adaptive e -constraint method uses an adaptive
e value based on the solution of the previous iteration. This
dramatically increases the efficiency of the algorithm while not
missing any Pareto-optimal solutions. Further, to avoid identifying
dominated solutions, the adaptive e -constraint method uses a
lexicographically weighted objective function. Lets consider a
problem with K objectives, ie, min{ f;(X), f(X)....fx(X)}. The
adaptive e-constraint method solves the following single objective
optimization problem (LOP) with a lexicographically weighted
objective function:

(LOP) : min f1(X)+Waf,(X)+...+Wifr(X)s.t. fr<é Vk=23...K

(10
a min f,
i - Itefat_ion 1,
&= [,
@ (&}
@ b lterat_ion 2,
AI ° o © &= fr- 4,
2|
X;

@ : o Itera@n 3,

@’Q. L d @ £ = f2- 24,
@ x.

! o © Iteration 4,

© x &= f,- 38,
(&}
@ e Iteration 5,
f2 \ | &=/
T T
fi A min f;

where the weights wy, for k= 2,...,K are calculated using the global

upper (f,fUB) and lower (f,fLB) bounds on fi(X) as wy = Wk,l/(f,fUB—

fLB+ 1). The global lower (upper) bounds for minimization objec-

tives can be found by minimizing (maximizing) each of the
objective functions individually subject to the original constraints.
With objectives only taking integer values, this choice of weights
ensures that the minimal increment of fi(x) is 1, which is always
greater than the maximal increment of w,f,(x). Similarly, the
maximal increment of waf3(X) is always less than the minimal
increment of wf,(x), and so on. Thus, this weighting makes sure
that f; has the highest priority, it is prioritized over f,, f, is
prioritized over f3, and so on. Note that the final Pareto solution
set remains the same, irrespective of the selected lexicographical
ordering of the objective criteria; the search needs any single fixed
lexicographical ordering. Fig. 3b illustrates the efficacy of this
weighting scheme in addressing the two shortcomings of the
traditional e -constraint method, e.g., correctly identify all Pareto-
optimal solutions.

A requirement for the adaptive e -constraint method is that
the objective functions must only take integer values. When an
objective k is not integer, then selecting the weights w;, becomes
difficult as the minimal increment of wyfi(X) cannot be guaran-
teed to be greater than the maximal increment of wy . 1fi 1(X).
Hence, the adaptive e -constraint method is not applicable in
general instances where the objectives take continuous values.
However, if only one of the objective functions is non-integral,
then adaptive e-constraint method can be employed by simply
assigning this criterion to be the last objective in the lexicogra-
phical ordering. By assigning this criterion to be the last objective,
we eliminate the need to know the minimum increment of this
objective. In the case of our RAP, assuming that cost and weight
objectives only take integer values, we assign the transformed
reliability objective fr3(X;), i.e., the log of unreliability, to be the
last objective.

This adaptive method is a recursive approach and solves single
objective problems by systematically adjusting the objective
bounds in a hierarchical manner where the least prioritized
objective is highest in the recursion hierarchy [29]. The choice
of e, for objective k is based on the previously found non-
dominated solutions, i.e., during the last recursion of objective k.
Given the lexicographic ordering of objectives as 1,2,...K, the
adaptive bound e is calculated as e, = {max(f,(x))—1:Xe
Pyr_1} Vk=3,4,..,K where P,_, is the set of non-dominated
solutions found since the last update of .

The adaptive e -constraint method improves the efficiency
over the traditional method significantly. However, a major
drawback of this method is that it identifies duplicate solutions
which lead to computational inefficiency. In Table 1, we present

min f,
A ® Iteration 1,e, = f,
x1
---@ e o Iteration 2,s, = s}
2 o ©
X2 @
© Iteration 3,¢, = s3
3
X @
""" @ -0 - @----2-—-—--g-—- Iteration 4,¢, = s3
(@) . 4
& ) Iteration 5,z, = s}
4
X3 ]
o
@ Q Iteration 6, ¢, = s3
.4 Xg No more possible
2 | L solutions, Stop

min f,

Fig. 3. An illustrative example of the (a) traditional e -constraint method and (b) adaptive e -constraint method in [29].
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Table 1
First two iterations of adaptive e -constraint method for the example in [29].

Iteration 1 Iteration 2

Sol. # f;<e3=451 fa<er Sol. # f;<e3=366 fo<es
h £ h £ B

1 86 214 324 e,=411 6 86 214 324 e,=411

2 96 186 204 €,=213 7 96 186 204 €,=213

3 125 131 342 €,=185 8 125 131 342 €,=185

4 209 128 367 €,=130 9 Infeasible e, =130

5 Infeasible €y=27

Max(f3) 367 Max(f3) 342

Note that solutions 1, 2, and 3 are identical to 6, 7, and 8, respectively. The adaptive
e -constraint could have avoided solving for the latter by checking for the former
solutions, which is our proposed enhancement. To formalize this we first note that
the problems corresponding to 1, 2, and 3 are relaxations of 6, 7, and 8, respectively,
e.g., same objective function and e 3 < 366 < 451. Hence, solutions 1, 2, and 3 satisfy
the f3 < €3 =366 and the f; < e, where e, is 411, 213, and 185, respectively.
Therefore, before solving an instance of QUOTE , we scan through the previously
solved problems formulations to identify the relaxations for the current instance. This
is achieved by comparing the current instance’s bound vector with the bound vectors
of the non-dominated solutions found thus far. For each relaxation, we test the
corresponding solution for feasibility with respect to the current problem. If the
solution is feasible, then it must also be optimal for the current instance since it
solves the relaxation problem. While this approach eliminates unnecessary problem
solutions, it creates additional overhead of scanning through the incumbent set of
non-dominated solutions. Hence there is an efficiency trade-off between solving
fewer problems and repetitively checking for previous solutions.

the first two iterations of the adaptive e -constraint method for
three objective MOIP in [29]. Here the value €3 in iteration 2 is
determined based on the results of iteration 1, i.e., e3=max
{324,204,342,367}— 1=366.

For this trade-off, we developed a checking strategy which
scans through only the non-dominated solutions collected in the
most recent recursion of objective k=3, e.g., one level above the
lowest level of recursion. Specifically, prior to solving the current
LOP instance with bounds &, and &3, we check for the existence of
a non-dominated solution in the set of solutions (P3) found during
the previous recursion of k=3 that satisfies:

X = {XEP3|lz(X)282 andf3(x)§£3}

The I,(x’) is the upper bound on objective k=2 in the LOP
instance where the non-dominated solution x’ is found. The
condition l(x') > &, implies that the problem, which x’ solves, is
a relaxation of the current LOP instance. The condition f3(Xx’) < &3
checks if the non-dominated solution X’ is a feasible solution to
the current LOP. If there exists a solution X' eP; which satisfies
both conditions, then X’ also solves the current LOP. We provide
the pseudo-code for the enhanced adaptive e -constraint method
used in Phase 2 of Fig. 2 below.

2.3.1. Enhanced adaptive e-constraint algorithm

Input: f28, FEUB for ke(2,... K}, wi, ex =f5"5,
flag, =1, ke {2,.. ,K}

Output: Set of Pareto-optimal solutions, P

1: P=9¢

2: While flag, =1 do
exo1: =f305: Proy
While flagix_1=1 do

Ek_2: =f,§‘i§; Px_o: =0; flagy_o: =

=0:flagy_,: =1

|
_

While flags=1 do

& = gUB; P, : :(Z);flagzz =1

0O N U bW

Input: ffLB,foB for ke{2,...,K}, wy, €k =f§UB,
flag, =1, ke {2,.. K}

9: While flag,=1 do

10: If X ={XePs|L(X)>¢ andf3(X)<e3} =0
11: Solve (LOC) for x,

12: If (LOC) is Infeasible

13: flag,:=0

14: Else

15: Py : =PUx; & : :fz(x)—l

16: End if

17: Else

18: Py : =PyUX; &) : =f2(X/)71

19: End if

20: End while

21: If P,=0 Then flag;: =0 End if

22: g3 ={max(f3(x))—1:xeP,}, P3 : =P3UP;
23: End while

24: :

25: End while

26: If Px_1=0 Then flagyx: =0 End if

27: g+ = {max(fy(x))—1:XxePx_1} Px: =PgUPx_4
28: End while

29:P: =Pg

30: Return P

The main difference of this procedure from that of [29] is
checking to see whether there is need to solve (step 10) and storing
the previously found solution X’ (step 18). The flag, indicates
whether the recursive solution at objective level k is complete
(flage=0) or not (flag,=1). Before the start of recursion at
objective level k, we initialize the bound at the global upper bound
(& : = foB), reset its non-dominated solution set (Px_q,=0), and
reset its flag (flagy=1). Prior to solving current LOP, we check for
recalling a previously found solution x’. If there is no x’ satisfying
the condition in step 10, then we solve the incumbent LOP. This
process is repeated until there is no feasible solution for the current
LOP and we set flag,:=0, which indicates the current recursion of
objective k=2 is complete. For objectives k>3, the recursion
completion is triggered when the there are no non-dominated
solutions found in all lower level objective recursions and we set
flag,:=0. The algorithm terminates when there exist no non-
dominated solutions found in the current level of €.

For the example in [29], the enhancement reduced the number
of integer problem (IP) solutions from 56 down to 35 to obtain 15
non-dominated solutions. This corresponds to (56—35)/56=
37.5% improvement. To further evaluate the effect of enhance-
ment method, we randomly generated 1000 problem instances of
the three objective MOIP in [29]. The average improvement across
1000 is observed to be about 39%.

3. Case study example

In this section, we experimentally compare the proposed method
with the popular meta-heuristic based approach NSGA2 on a
series-parallel RAP example taken from the literature [30]. This
series-parallel system consists of three subsystems (s=3), with an
option of five, four and five types of components in each subsystem
(my =5, my =4, mz=>5) respectively. The maximum number of
components is seven (Mmagx1="Nmax2="Nmax3=7) in each subsystem.
Table 2 presents the component parameters for each subsystem.

The experiments of the proposed method and NSGA2 are run
on an HP desktop, with an AMD Quad-Core CPU operating at
2.3 GHz and 8 GB of RAM. The proposed method is coded in
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Table 2
Component parameters for each subsystem of the series-parallel system.

Component Subsystem i
type: j
1 2 3
Rel. Cost Weight Rel. Cost Weight Rel. Cost Weight
1 94 9 9 97 12 5 96 10 6
2 91 6 6 86 3 7 89 6 8
3 89 6 4 70 2 3 72 4 2
4 75 3 7 66 2 4 71 3 4
5 72 2 8 67 2 4
Table 3

Comparative results of the proposed method and NSGA2.

Proposed decomposition-based method

MATLAB® R2008b and NSGA?2 is coded in C, available from Deb’s
Lab [31]. For NSGA2, we vary its population size from 100 up to
5000, with parameters set as follows: generations=100, crossover
probability =.8 and mutation probability=.008. Results from the
proposed method and NSGA2 are shown in Table 3.

From Table 3, we note that the proposed method identifies all
the 6112 non-dominated points in 1728 s. For NSGA2, the number
of Pareto points identified increases as the population size
increases. When the population size is 5000, it identified 2324
Pareto points. However, only some of these solutions are Pareto-
optimal points (1263 out of 2324). These results illustrate the two
shortcomings of the NSGAZ2. First, it cannot guarantee the gen-
eration of all Pareto-optimal points. More importantly, it cannot
guarantee that the points generated are Pareto-optimal. Fig. 4
shows the 6112 solutions identified by the proposed method (*)
and the 1263 solutions found by NSGA2 (A) with population size
5000. Figs. 5 and 6 illustrate these results on bi-objective plots.

# of Pareto-optimal points 6112 For this. problem, tl}e number qf IPs solved using the adaptive
CPU time (s) 1728 s e -constraint method is 5773, while only 1680 IPs needed to be
NSGA2 solved using our proposed method to identify all the Pareto-optimal
solutions, translating to an improvement of (5773-1680)/
Population size 100 200 500 1000 2000 4000 5000 5773=70.9%. We can see that the proposed method significantly
:0:1’“6‘0 P°i{“sl . 5]‘2 ;‘7“ 229 ;‘i ;;g9 ﬂgg ﬁé‘; outperforms the adaptive e -constraint method. The additional
of pareto-optimal points . s ~ s .
CPU time (s) 125 285 695 177s 4425 1231s 1699 reason we can identify 6112 Pareto opt_lr_nal solutions by 1680 IPs
is because we also apply the decomposition scheme.
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Fig. 4. Set of Pareto-optimal solutions obtained by the proposed method and NSGA2 for the RAP problem.

250 . : ‘ . . 160 . ! y ;
* Proposed Method
ANSGA2 MO * Proposed Method
200+ : = A NSGA2
_ 1= = 100 b ooy uessies sstessiess s Bk A
] =
N £ |
£ =
100 -
= @l
: 40+ : i &
50k i — S Radts o A s B A
H 20k . LI vy £
M5 il Rl vl vy VT N et %g i
&
U st i ﬁmﬁé 1 - * L \‘ 1 1 D i l L L 1
04 05 06 07 08 09 04 05 06 07 08

viax Keiiabiiity

Max Reliability

Fig. 5. Set of Pareto-optimal solutions in the space of reliability vs. cost (left); reliability vs. weight (right).
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Fig. 6. Set of Pareto-optimal solutions in the space of cost vs. weight.

4. Conclusion and future work

In this paper, the redundancy allocation problem (RAP) pro-
blem is formulated as a multi-objective optimization problem.
A decomposition-based approach is proposed to solve RAP pro-
blems in series-parallel systems efficiently and exactly. In this
approach, we first linearize the reliability objective through
logarithmic transformation. We then decompose the multi-
objective RAP problem into smaller multi-objective sub-problems
and efficiently solve each sub-problem through an enhanced
whole Pareto set generation method. These non-dominated solu-
tion sets are then Cartesian combined and filtered in a sequential
manner to obtain the whole Pareto-optimal set for the RAP. Using
a series-parallel system example from the literature, we compare
the proposed approach with the meta-heuristic based multi-
objective evolutionary algorithm NSGA2 in terms of Pareto set
representativeness and computational performance. The pro-
posed method is not only more efficient but also identifies all
the Pareto-optimal points.

The proposed method deals with system reliability assuming
that the system and its components have binary states. Future
work will consider extending the proposed method to account for
availability and multi-state systems in redundancy allocation
problems. The proposed approach aims at identifying the whole
Pareto-optimal solution set for multi-objective RAP. However, for
large instances, the size of the whole Pareto-optimal solution set
could be too large for the decision maker to effectively analyze
and compare promising solutions [36-38]. Hence, there is usually
a further step necessary to prune and reduce the Pareto-optimal
set. The two practical approaches are pruning (1) by nonnumeric
ranking preferences and (2) by clustering of the solutions in the
objective space. A future research direction is to explore ways to
reduce the pruning need by generating only those Pareto-optimal
solutions that would eventually be part of the pruned set.
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