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ABSTRACT

This paper analyzes the effect of the polymer matan-viscoelastic behaviour in the
mechanical behaviour of thick multilayered cylingleFhe original contribution of this
work is to provide novel approximate analytical dmns to compute the time-
dependent internal stress state throughout the thipkness within the framework of
nonlinear viscoelasticity theory. The structuresnsidered are thick, multilayered
anisotropic infinitive long cylinders subjected &xisymmetric mechanical loading.
Under such conditions there is an exact elastiatieol which naturally satisfies
equilibrium, strain-displacement, compatibility abdundary conditions for the stated
constitutive equations and loading. Due to the iooious stress variations throughout
the cylinder thickness, the proposed nonlinear ogkastic solution assumes the

averaged stress state to calculate the nonlineatieland viscoelastic factors in each



layer. Furthermore the solution is obtained assgrttat the creep strains, within each
layer, are constant through the thickness. Theqseg algorithm converges to the exact
solution when the number of layers is artificialcreased. For the linear viscoelastic
case the proposed solution proved to match thetdxamwvn solution for isotropic
viscoelastic materials. Finally several inventedesaare run to illustrate the importance
of the viscoelasticity phenomenon on the intertrass field throughout thick laminated

cylinders.

KEYWORDS: Polymer—matrix composites (PMCs); Creep; Elasticiynalytical

modelling; Durability.

INTRODUCTION

The hollow cylinders or cylinders are very commaomcural elements, used in many
applications including trusses, hoses, piping systand drive shafts. The effort to

improve oil production riser performance lead te fhossible use of risers made of
polymer matrix composites to bring the oil to sadaplatforms in the offshore

exploration at waster depth of 2 km or more. Counseatly the increasing use of

polymer matrix composites in civil engineering apgifions has renewed interest in
problems of stress analysis of cylindrical lamidatemposite structures.

Many analytical works about stress analysis of cositp cylindrical shells have been

done during the past years. This is related withititcrease use of composite shells in

many applications, such as civil engineering stmes and aeronautical industry. The



static behaviour of thin shell panels has beensgtigated by using two-dimensional
shell theories based on the Love-Kirchhoff hypoise€handrashekhara and Kumar [1]
presented and assessed these shell theories. mimated shell theories provide an
accurate solution for thin-walled cylinders but finick-walled cylinders elasticity
solutions are required for an accurate determinatib the three-dimensional stress
states.

The nonlinear viscoelastic analysis of thick lanacomposites, using the Schapery
nonlinear visceolastic constitutive equations [#s been preformed, essentially, using
finite elements (FE) formulations whether usinglglp/-ply classical approach [3] or
using a more sophisticated approach based on sualte approach [4] [5].

The laminated cylinder is one of a very few strugtigases for which an exact elasticity
solution is available. The analytical solution faultilayered cylinders is described in
detail by Herakovich [6]. This is based on theearbrks of Lekhnitskii [7] and Pagano
[8] among others. Based on this elastic solutioi\zel nonlinear viscoelastic analytical
approximate solution was developed, using the Salyaf?] non-linear viscoelastic
constitutive equations, to compute the stress sihteonlinear viscoelastic polymer
matrix fiber reinforced laminated thick cylindefhe present solution considers that the
material is linear elastic in the fiber directiondanonlinear elastic-viscoelastic in
transverse and shear directions to the fibre. lals® assumed that the material is
transversely isotropic. Since the stress stateggsanoontinuously throughout each layer
thickness, the averaged stress state is used wdmeputing the nonlinear elastic and
viscoelastic factors for each layer. Furthermor gblution is obtained assuming that

the creep strains, within each layer, are conshaatigh the thickness.



The present analytical approximate solution coneery the exact solution when the
number of layers is artificially increased. The gmwsed approximated solution matches
the exact known solution for the pressurizationaofompressible linear viscoelastic
isotropic cylinder constrained by an elastic case.

Finally several invented cases are run to simuthte mechanical behaviour of a

nonlinear viscoelastic T300/5208 [9] composite myér under internal pressure,

external pressure and axial force. These casassarkto demonstrate the importance of
the viscoelasticity effect over the time-dependamternal stress field evolution

throughout thick laminated cylinders.

APPROXIMATE NON-LINEAR VISCOELASTIC SOLUTION

Few composite structural configurations have ancexadasticity solution and the
laminated circular cylinder is one of those ca3é® exact elasticity solution for a long,
circular cylinder made from a homogeneous, monaxliayer and subjected to
axisymmetric mechanical loading is well establisii@jd In this case the mechanical
loads are applied axisymmetrically at the ends andormly and axisymmetrically

along the length. This exact elastic solution §assequilibrium, strain-displacement,
compatibility and boundary conditions for the sthtenstitutive equations and loading.
For a long axisymmetric cylinder under the presaiboading, i.e. loaded uniformly
along its length, the stresses are independextintl @ (see Figure 1). Hence the partial

differential equilibrium equation reduces to ordinan r only,
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For a hollow cylinder subjected to normal stregssegs internal surface and on external

surface the boundary conditions are (see Figure 1)

TGr(R):O and Ter(&): O ’ (2)
0

where R and R, represent the internal and the external radisspeetively andP and
P, represent the internal and external pressureecésply.

Integration of the last two equations using theaslsé¢ress boundary conditions gives the

zero shear stress, i.e.

7, =0
{ . 3)

r, =0

The most general displacements for the problemnurwiesideration are,
u=u(xr) -axial
v=v(x,r) -tangentia. (4)

w=w(r) -radial

The reduced strain-displacement equations for tkisymmetric cylinder loaded

uniformly along its length are
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Three of the equations of compatibility are satidfidentically for the above strains.

The remaining three are
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Integration of the first two show that the axiahst is constant in the layer,

£ =€, (7)

An orthotropic viscoelastic layer the constituteguations in principal material (1,2,3)

coordinates (see Figure 1) are,
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The elastic-viscoelastic constitutive equations time global cylindrical X 6r)

coordinated for this orthotropic layer at a fibegke gto the axial x-direction are given

by
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where C_Jlj are given by transformation equations [2].

By using the constitutive, equilibrium and straisplacement equations the following
axial and tangential displacements, respectivet/oatained

u(x,r)=g’x
{v(x,r)=y°xr' (10)

For the radial displacement the following secondeodifferential equation is obtained
by assuming that the creep strain is constant gtrabe layer thickness, i.e. in radial

direction,

626 - 2636) V. (11)
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where
Zcreep :(CKB_C_:kZ)gkcreepu k:1,2,.. ,E (12)

The solution of Equation (11) is



(6 -C 3) 0 (626_2636) 2 Z
X G P e — = <1, 13
( ) AT AR T (C33 sz) S (4C33_C22) yor ' (C s C 2) r 49
where
= % 14
X=\E, (14)

If the layer is isotropic or transversely isotrohen C,, =C,,,C,,=C,,C .= 0and the

Equation (11) takes the form
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which has the solution

z creep

33

w(r)= Ar+A2 +=22_(2Inr -1r . (16)

Let us assume that the material is linear-elastifthre direction and all nonlinear and
viscoelastic response is transverse to the fibersn shear. If we assume that the
material can be treated as being isotropic in tBepkane, then using the Schapery [2]

analytical approach for creep we obtain
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where
t dr’ , r dr’
‘//:joﬁ , (/j = Oa_z- (18)

where the nonlinear parametegs, ., 9,3, are stress dependent (of some stress

invariant). Due the restriction imposed on the pretrain, i.e. constancy in radial
direction, the creep strains are calculated usiegaveraged stress state in the layer.

If the kernels in Equation (17) are represented Pyony series as

N

AS, (1) =D § m(1-€7) (19)

i=1

and the Poisson coefficients, andv,, are assumed constant, the creep strains at each

instantt, after integration, can be described by the foll@requations
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where the internal straing . are obtained using the following recursive form(dae

appendix I)
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The restriction introduced by considering the crepins constant in radial direction
allows the analytical solution of axial displacenserstill this approximation can be
used in moderately thick layers as it will be shawithe next section. Furthermore the
solution converges to the exact solution when thenlver of layers is artificially
increased.

The filament wound structures are assumed to hawend angle of@ In a multi-
layered cylinder, each layer may have each own wamgle. In the present study are

considered cylindrical shells madeMforthotropic plies with different wind angles.
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The solution for a laminated, multilayered cylingoceeds directly from the solution
for a single-layer. The requirements are the steags strain continuity at the layer

interfaces.
In this case there ardvlunknowns éXO,VO,A,AZ) for each layer. However due to the

continuity of displacements between layers one nheste £X° and)® constants

throughout the cylinder thickness. Therefore theaber of unknowns reduces t¥22.
The corresponding equations ar@12l) continuity equations for radial displacements
and stresses,

WP =w*? and ¢P =" atinterfacgs= .1, M, - , (22)

two boundary surface conditions,

o,(R)=-R and o, (R)=-P, (23)

and two equilibrium equations, axial force

Rn
P=2 rdr, 24
.. 0 (24)
and torque
Rn
T= 277[ o T rdr, (25)

which gives exactly 91+2 independent equations
Finally since it is assumed that the material medir-elastic in fibre direction and all
nonlinear response is transverse to the fibers norshear, the elastic nonlinear

compliance in principal material (1,2,3) coordirsi® given by
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(26)
where g, ,,,d, ¢ are the elastic the nonlinear parameters thattaess dependent (of

some stress invariant). The respective stiffnessrixnés immediately obtained by
matrix inversion. This algorithm was programmedoiat FORTRAN computer code

named as RESFLU.

EXACT ANALYTICAL SOLUTION FOR A LINEAR VISCOELASTIC

CYLINDER

Christensen [10] presented an exact solution ferpfressurization of a compressible
linear viscoelastic cylinder constrained by an tetasase, considering sufficient long
cylinders such that plane strain conditions carassimed. The solution also assumes
that the Poisson coefficiem is constant. Using the Prony series to represenshear
viscoelastic relaxation,

G(t) =G, +ZN:Gie_%i (27)

i=1

Thes multiplied Laplace transform is given by
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where

C(s)=-KB(s)+A(s)

(32)

D(s)=(1-2/)K B(s)+A(s) )

F (5)={ K 1B(s) - A(9)+(R*/R7) (1~ 2)K 1B(5) + A(S) ) )
=k(s-a)(s~a,)-(s~ay)

where x is a constant and, are the roots ofF (s) and the integeN the number of

terms of the representation given by (27) and

K= SN (35)
2R, (1-v.%)

where E, and v, are the elastic modulus and Poisson coefficienthef steel case,

respectively, and is the case thickness.
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In order to verify the present algorithm an exampkes run to simulate an internal
pressurized (L00MPa) viscoelastic cylinder (polymeith an internal radiusR) of
600mm and an external radius of 798mm constrainedrbelastic case (steel) 2mm
thick, i.e. the composite cylinder has an exteradius Re) of 800mm. The cylinder is
considered sufficient long such that plain straonditions can be assumed. The

properties considered for the steel case w&re 205MPe and v, =0.3. The polymer

has a Poisson coefficiemt=0.3 and the shear relaxation modulus data is given in
Table I.

The equivalent shear creep compliance, given bwtemu 36, data used in RESFLU is
given in Table II. In the present algorithm then@astrain solution corresponds to
impose an axial strain restriction. The results RESFLU follow quite closed

Christensen [10] solution as depicted in figures 2.

N

S,(t)=S,+Y 5 (1-e™). (36)

i=1

The results are in an excellent agreement withtdisear viscoelastic solution.

NONLINEAR VISCOELASTIC CYLINDERS

The simulations which follow are based on the preségorithm, RESFLU. The cases
presented are invented without any experimentalligust for illustrative purposes. It
is simulated the mechanical behaviour of a compagitinder under internal pressure,
external pressure and axial force. For this purpbse considered a carbon fibre

reinforced laminated T300/5208 [9] cylinder withetstaking sequences of [45/-45/-
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45/45] and [54/-54/-54/54]. The material propertieased on the results published by
Tuttle and Brinson (1986) are described in Table¥.I The cylinder with closed ends
has an inner radiu®=200mm and a inner radius to thickness rati&dh of 100, 10, 5

and 2.

The octahedral shear stress in the matrix, acogirdiwith Lou and Schapery [11]

stress, is given by

(37)
where
a’ | |En |/m—3|/l2 0 0 0 O|g,]
m E, Ey
g, g,
m 0 1 0000
a. .
I 0 1 0 0 0 °®
m T
T23 0 0 010 0=
T | |0 0 001 0™
m T,
_le _O 0 0 0 O ]:_12

Nonlinearity arises also as a consequence of therrdations, provoking internal
volume change as well as the angles of layers.raties rjo in the unloaded state can

be found to vary in function of the respective hatiain as

=1 (1t g). (38)

The angleg of each layer change in function of the respedciveraged axial and hoop
strain in the same manner used by Dillard [12}ler laminated composites,

(1+¢,)

o199 1+&,+y,0 190

(39)
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where ¢f represents the layer angle in the unloaded statesg¢,,y,, represent the

axial, tangential and shear strains.

In the present case it was also assumed that theoelastic behaviour under
compression is symmetrical of the tensile viscdaldsehaviour which may be not the
case in real material systems.

The loading conditions used in this study are diesdrbriefly as follows.

Internal pressure

The internal pressure was chosen, consideringhtiinecylinder theory, to result into a

hoop stress of 100MPa as depicted in figure 5,

Os=1 ReR =100MPa,

(40)

A R’ ~p——__=50MPa
AR-RY) "2R-R)(R*R)2 "AR-R)

g, =R

External pressure
The external pressure was chosen, consideringhthecylinder theory, to result into a

hoop stress of 100MPa as depicted in figure 6,

g, = pei =-100MPa,
R-R
(41)

H&Z = &2 = R :—50|\/|P.
a(RP-RY) *2(R-R)(R*R)2 " 2R-R) )

UX: pe

Axial loading
The axial load was chosen, considering the thimdgr theory, to result into an axial

compressive stress of 100MPa as depicted in figure
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o, =——*—— =-100MPe. (42)

RESULTSAND DISCUSSION

The reference creep strain values for thin cylindeere obtained from the algorithm
LAMLFU [13], which extends the classical laminatetry to include the non-linear
Schapery viscoelastic model. For each loading dalews the presentation and

discussion of the results.

Internal pressure

For this load case two different staking sequeneexe simulated [45/-45/-45/45] and
[54/-54/-54/54]. The purpose was to illustrate thtaking influence on the creep
evolution. The first case clearly shows a strongetielence on the viscoelastic matrix
exhibiting high creep extensions for all inner tedito thickness ratid®/h considered,
as depicted in figure 8. However the second staldaguence shows little creep
extensions except for the thicker case which esdilihigh compressive axial creep
deformation, as depicted in figure 9. The hoop amdél stresses also show large
changes for the thicker cases, aftePnid, as depicted in figures 10 and 11. This
represents an increase of 38% for the hoop stre$s1@% for the axial stress in the
inner side of the cylinder witR/h=2. In the case of cylinder witR/h=5 the increase is

just 4% for both stresses in the inner side.
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External pressure

In this case the [54/-54/-54/54] staking sequelnm®vs also a week dependence on the
viscoelastic matrix, as depicted in figure 12. Hoerethe strain deformation depends
strongly on the cylinder thickness. Furthermore thdinder shows small time-
dependent stress changes, as depicted in figurasdL34, due to the viscoelastic effect,

when compared against the internal pressure case.

Axial loading

This last case exhibits an external axial and hastqains strongly affected by
viscoelastic nature of the matrix, with no sigrafit thickness influence, as depicted in
figure 15. However the stresses variations dubdoviscoelastic effect are significantly
larger than in the internal pressure case, as shiwmoughout figures 16-21. The
increase, after £anin, of the axial stress in the inner side of¢jknder was more than
200% for theR/h=2 andR/h=5 cylinders. The maximum shear stress also present
increase of more than 100% in the outer side ottti@ders for the same inner radius

to thickness ratios. Furthermore the maximum ragtialss increases more than 200%.

The computed reference strains, given by LAMFLU tahahe computed strains by
RESFLU for theR/h=100 cylinders which is a good indication on thalgy of the

RESFLU results for the nonlinear viscoelastic clttans. All simulated cases show
the need to compute the time-dependent stresstitateghout the thickness, especially
in the presence of thick walled cylinders. The mdépressure loading case displayed
the least time-dependent stress variation. By dppdke axial compressive loading

case has shown the most critical stress variat@anerally the internal stress
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redistributions due to the viscoelastic naturehefrmatrix lead, after a certain amount of
time, to stress states which in some cases ar&diar the initial computed (elastic)
stress state. This phenomenon, for sure, can éepisktnature failures. Therefore careful
time-dependent stress analyze should be perform#tkipresence of viscoelastic thick
walled cylinders. The present approach is a fitep dowards the long-term failure
prediction of nonlinear viscoelastic multilayereshposite cylinders under constant or

cyclic loading.

CONCLUSIONS

This work presents a novel analytical approachaloutate the time-dependent stress-
strain state in nonlinear viscoelastic multilayeoeinposite cylinders. The solution is
possible when some restrictions in each ply areoseg, i.e. the creep strains are
assumed constant and the nonlinear elastic andelastic factors are computed using
the averaged stress state in each layer. The adhation can be found when the
number of layers, artificially introduced, increage infinity. The proposed solution,
obtained using few layers, matched the exact knevlution for the pressurization of a
compressible linear viscoelastic cylinder constédiby an elastic case.

Invented cases are run to simulate the mechanatavour of a T300/5208 nonlinear
viscoelastic multilayered composite cylinder undeernal pressure, external pressure
and axial force. These cases are used to demansth&t importance of the
viscoelasticity effect over the time-dependentriméé stress field evolution throughout

thick laminated cylinders. In some cases, givenughatime, the stress states evolve
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into stress states which, in some cases, aredar fhe initial computed (elastic) stress

State.
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APPENDIX |

In order to eliminate the Volterra-type integrdls transverse and shear compliance are

expressed using Prony series, as Gramoll [14] and CL5] have already discussed.

Then the creep strain can be described by
cr N
i=1

where
i (w-p)\ 99, MO (T
b (1)=8,0 1 10) BT g

The previous equation can be integrated

0 dr

(6780 (o) Bl

(1.1)

(1.2)

(1.3)
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and
t dr
V( ) :J-o a

Let us now calculaté; (t,-+1) for the timet;.1 based on the knowledge of the value of

£ m(t;) at the timey,.

i,mn

gi,mn (tj+1) = gi m (0-]_+1) _ e—/limv(tm) {jtj e/‘i,rmV(T) Mdl’ +

0 dr
J'tjﬂ e/limv(r) dgn’n (J) df} (I4)
5 dr

Therefore
E m (tj+1) =G (Uj+1) _ e_/li.r‘m[v(thl)_v(ti)] [gl - (Uj ) - (tj )j|

— e_ﬂi-ﬂﬂv(tiﬂ)J-t“l e/]i.mnv(r) dgi,rm (J) dr (1-5)

4 dr
Noting the following relationships
i1 d ‘ _Ai mn

Ao V(1) V() | = A t ag; i (’a,.ﬂ) (ta-7) . tsrst,,  (16)
and
A [ V() V()] = A mj“*l ar___ “Am (tia-t)) (1.7)

t amm aa',r’m (Uj+l)
Finally the equation (1.5) can be integrated

e—/limv(tiﬂ)J'ti*l e/liy,mv(r) dgi,mn (U) dr = .[tiﬂ e‘ﬁi,nn[v(tjﬂ)_v(r)] dglrm (U) d

t dr tj dr
At (1.8)

with At =t,,, -t

Replacing this result (1.8) into equation (I.5) tleeursive formula is obtained
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&i (tj+1) =0 m (aj+1)_e ol [Gi,rm(ajﬂ)_gi (tj):| (1.9)
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Figure Captions

Figure 1: Laminated composite cylinder (after [2]).

Figure 2: Time-dependent axial stress in the vissbie material.

Figure 3: Hoop stress in the viscoelastic matexfi@r 16 min.

Figure 4: Radial stress in the viscoelastic mateftar 16 min.

Figure 5: Scheme of load distribution in a thinimgler under internal pressure.
Figure 6: Scheme of load distribution in a thiniregtler under external pressure.
Figure 7: Scheme of load distribution in a thinigler under axial loading.

Figure 8. External axial and hoop strain time-dejegh evolution for cylinders [45/-
45/-45/45] under internal pressure with inner radiw thickness ratioR, /n of 100, 10,
5and 2.

Figure 9: External axial and hoop strain time-delegr evolution for cylinders [54/-
54/-54/54] under internal pressure with inner radw thickness ratioR; /h of 100, 10,
5and 2.

Figure 10: Axial and hoop stress distribution immagely after loading (t=0) for
cylinders [54/-54/-54/54] under internal pressuithwnner radius to thickness rati&s
/h of 100, 10, 5 and 2.

Figure 11: Axial and hoop stress distribution thstant t=18 min for cylinders [54/-
54/-54/54] under internal pressure with inner radw thickness ratioR /h of 100, 10,
5and 2.

Figure 12: External axial and hoop strain time-celemt evolution for cylinders [54/-
54/-54/54] under external pressure with inner radaithickness ratio®; /h of 100, 10,
5and 2.

Figure 13: Axial and hoop stress distribution immaeely after loading (t=0) for
cylinders [54/-54/-54/54] under external pressuith wner radius to thickness rati&s
/h of 100, 10, 5 and 2.

Figure 14: Axial and hoop stress distribution & ifistant t=19min for cylinders [54/-
54/-54/54] under external pressure with inner radaithickness ratioR; /h of 100, 10,
5and 2.

Figure 15: External axial and hoop strain time-cejemt evolution for cylinders [54/-
54/-54/54] under axial compressive load with inretius to thickness ratid? /h of
100, 10, 5 and 2.
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Figure 16: Axial and hoop stress distribution imimagely after loading (t=0) for
cylinders [54/-54/-54/54] under axial compressigad with inner radius to thickness
ratiosR; /h of 100, 10, 5 and 2.

Figure 17: Axial and hoop stress distribution & ifistant t=19min for cylinders [54/-
54/-54/54] under axial compressive load with inredius to thickness ratid® /h of
100, 10, 5 and 2.

Figure 18: Radial stress distribution immediatdigraloading (t=0) for cylinders [54/-
54/-54/54] under axial compressive load with inretius to thickness ratid? /h of
100, 10, 5 and 2.

Figure 19: Radial stress distribution at the instai®® min for cylinders [54/-54/-
54/54] under axial compressive load with inner wadio thickness ratio]; /h of 100,
10, 5 and 2.

Figure 20: Shear stress distribution immediatetgraibading (t=0) for cylinders [54/-
54/-54/54] under axial compressive load with inretius to thickness ratid? /h of
100, 10, 5 and 2.

Figure 21: Shear stress distribution at the instet® min for cylinders [54/-54/-54/54]
under axial compressive load with inner radiushtokiness ratio®; /h of 100, 10, 5 and
2.
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Table I. Shear relaxation modulus data (equatign 26

[ G 1§
MPa min

0 462

1 32 1
2 72 10
3 165 95
4 590 822
5 748 7224
6 703 65632
7 690 370698
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Table II. Shear creep compliance used in RESFLU.

[ S A

0 2.89E-01

1 1.42E+00 1.00E-06
2 2.31E-01 1.00E-05
3 1.38E-01 1.00E-04
4 6.49E-02 1.00E-03
5 1.46E-02 1.00E-02
6 6.20E-03 1.00E-01
7 2.71E-03 1.00E+00
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Table Ill. Elastic properties of T300/5208

E; E; G2 Vio Vo3
GPa GPa GPa

132 9.434 641 0.273 0.273
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Table IV. Transverse and shear creep compliand&00/5208

i S2i A2z Seei Aesi
GPa min? GPa min?
0 0.10600 0.15601
1 0.00104 1 0.00235 1
2 0.00119 10* 0.00232 10t
3 0.00281 102 0.00506 102
4 0.00499 10° 0.00823 10°
5 0.01063 10* 0.01567 10%
6 0.01779 10° 0.02434 10°
7 0.05460 10° 0.06500 10°

30



Table V. Transverse and shear creep complianc8@®/5208

Coefficient
Function* a £ (MPa)

Jo,22 0.00000

01,22 0.08750 6.43
02,22 0.00000

ag22 0.24700 6.43
Jo,66 0.00513 12.05
O1,66 0.00979 7.23
02,66 0.12400 7.23
ag,66 0.03400 14.50

g =10+ a (1~ B).a,; =exp(-a (1~ B))




List of Figures

P N TRE

ﬁ

e TE
KK ik

Figure 1: Laminated composite cylinder (after [2]).

\l
o
o

]

o)
o
o

al
o
o

IN
o
o

w
o
o

— Christensen (1982)

N
o
o

O RESFLU

Axial Stress (MPa)

=
o
o

o
o

1E-01 1E+01 1E+03 1E+05 1E+07
Time (min)
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Figure 6: Scheme of load distribution in a thiniregtler under external pressure.
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Figure 7: Scheme of load distribution in a thinirgler under axial loading.
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Figure 9: External axial and hoop strain time-dejegh evolution for cylinders [54/-
54/-54/54] under internal pressure with inner radiu thickness ratioR /h of 100, 10,
5and 2.
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Figure 11: Axial and hoop stress distribution thstant t=18 min for cylinders [54/-
54/-54/54] under internal pressure with inner radiu thickness ratioR; /h of 100, 10,
5and 2.
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Figure 12: External axial and hoop strain time-chel@mt evolution for cylinders [54/-
54/-54/54] under external pressure with inner radaithickness ratioR; /h of 100, 10,
5and 2.
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Figure 13: Axial and hoop stress distribution immaeely after loading (t=0) for
cylinders [54/-54/-54/54] under external pressurthwnner radius to thickness ratios

R/h of 100, 10, 5 and 2.
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Figure 14: Axial and hoop stress distribution & ifistant t=19min for cylinders [54/-
54/-54/54] under external pressure with inner radaithickness ratioR/h of 100, 10,

5 and 2.
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Figure 15: External axial and hoop strain time-celemt evolution for cylinders [54/-
54/-54/54] under axial compressive load with inretius to thickness ratid? /h of
100, 10, 5 and 2.
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Figure 16: Axial and hoop stress distribution imimagely after loading (t=0) for

cylinders [54/-54/-54/54] under axial compressigad with inner radius to thickness

ratiosR, /h of 100, 10, 5 and 2.



150
T300/5208 [54/-54/-54/54] t=10° min
100 4 . .
N —— Ri/h=100
N -+- Ri/h=10
= 50 N \2\ Go -2 - Rilh=5
S DL -+ Ri/h=2
v O 5_\.-‘..‘. ~ TN = -
ﬁ RS R R
(4/:) .o - 'E\ sssss 4
-50 7~ _ 4T~ g
00 T-- - Py mima A
] o, B SEEEURCE
-150 4 — — : —
0 0.2 0.4 0.6 0.8 1

(r-Ri)/(Re-Ri)

40

Figure 17: Axial and hoop stress distribution & ifistant t=19min for cylinders [54/-
54/-54/54] under axial compressive load with inretius to thickness ratid? /h of

100, 10, 5 and 2.
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Figure 18: Radial stress distribution immediatdigraloading (t=0) for cylinders [54/-
54/-54/54] under axial compressive load with inretius to thickness ratid? /h of

100, 10, 5 and 2.
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Figure 19: Radial stress distribution at the instai®® min for cylinders [54/-54/-
54/54] under axial compressive load with inner wadio thickness ratio]; /h of 100,
10, 5 and 2.
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Figure 20: Shear stress distribution immediatetgrabading (t=0) for cylinders [54/-
54/-54/54] under axial compressive load with inredtius to thickness ratid® /h of
100, 10, 5 and 2.
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Figure 21: Shear stress distribution at the ingtet min for cylinders [54/-54/-54/54]
under axial compressive load with inner radiushtokness ratio&; /h of 100, 10, 5 and
2.



