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The Discrete Fourier Transform (DFT) has played a fundamental role for signal analysis. A common
application is, for example, an FFT to compute a spectral decomposition, in a block by block fashion.
However, using a recursive, discrete, Fourier transform technique enables sample-by-sample updating,
which, in turn, allows for the computation of a fine time–frequency resolution. An existing spectral
output is updated in a sample-by-sample fashion using a combination of the Fourier time shift property
and the difference between the most recent input sample and outgoing sample when using a window
of finite length. To maintain sampling-to-processing synchronisation, a sampling constraint is enforced
on the front–end hardware, as the processing latency per input sample will determine the maximum
sampling rate. This work takes the recursive approach one step further, and enables the processing of
multiple samples acquired through oversampling, to update the spectral output. This work shows that it
is possible to compute a fine-grained spectral decomposition while increasing usable signal bandwidths
through higher sampling rates. Results show that processing overhead increases sub-linearly, with signal
bandwidth improvement factors of up to 6.7× when processing 8 samples per iteration.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

The Discrete Fourier Transform (DFT) has played a fundamental
role for signal analysis. Traditionally, samples are acquired and pro-
cessed in a block-processing fashion, where the number of samples
required per spectral update is a function of the desired spectral
resolution. The result is a delayed output with the time resolution
determined by the block capture and processing rate.

To improve time and frequency resolution, we need to either
capture and process the block data at a higher rate, or, alterna-
tively, utilise recursive Fourier transform methods [1–4]. Adopting
Recursive Sliding discrete Fourier Transform techniques enables
sample-by-sample updating with the flexibility of allowing the
computation of finer time–frequency resolution. The sample-by-
sample updating uses the Fourier time shift property to update
an existing spectral output using the most recent input sample.
To maintain sampling-to-processing synchronisation, a sampling
constraint is enforced on the front–end hardware. The processing
latency per input sample will determine the maximum sampling
rate permitted to allow an updated output in a single sample pe-
riod [5].

This work takes this technique one step further, permitting
multiple samples gained through sampling rates higher than those
permitted for single-input synchronisation, however still achieving
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synchronous processing (albeit with a marginal penalty). This in
turn shows that it is possible to increase the sampling rate with
the aim to increase usable signal bandwidths, and still achieve a
fine time–frequency decomposition. Section 2 discusses the Recur-
sive DFT and highlights previous work in the field including error
correction for finite-bit arithmetic. Section 3 discusses the use of
multiple samples for spectral updating, and discusses the costs and
benefits of using higher sampling rates.

2. Recursive sliding discrete Fourier transform

The method employed in this study for DFT computation is the
Recursive DFT (RDFT), where the RDFT is based on the principle of
updating a current output F [u] as new data is added to the input
sequence. The addition of a new data point does not imply that the
input sequence has to grow in size (from size N to N + p, where
p is one for a single new input to the sequence), but rather im-
poses the constraint that a window function of size N is required,
which shifts to include the new sample (N + p), and removes the
outgoing sample (N + p − N = p).

If the output is known a priori, an update can be computed
by utilising the Fourier shift theorem and computing a DFT on
the new data that has been added, while removing the influ-
ence the outgoing sample had on the output (for a window of
size N). The computational cost for the recursive DFT technique
is far lower than the FFT (O (n log2 n)) [1,6], and is shown to im-
prove by log2 n [2].

The recursive technique is based on the work of Sherlock [2]
and Kamei [7] and computes an updated F [u] by removing the
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contribution of the outgoing sample and adding the contribution
of the incoming sample using N length window [1,3,8].

Let:

fout = f [0] be the outgoing sample (1)

f in = f [N] be the incoming sample (2)

The new output can be computed using:

Fnew[u] =
[

Fcurrent[u] + f in − fout

N

]
W u

N (3)

where the complex exponential is defined in a more compact
form:

exp

[
j
2πu

N

]
= W u

N (4)

Using this formula, an updated output can be computed for
each DFT point based on the difference between the incoming and
outgoing samples. A further advantage of this technique is each
DFT point can compute an update independently (select frequen-
cies of interest can be computed if desired), and only minimal
data (new sample) needs to be transferred to the processing el-
ements used for each DFT point. An FFT could be performed prior
to using the recursive DFT (if block data available), or given a data
sequence f [n], the output is already known at time t = 0 (F [u] = 0
∀u). Prior to any data entering the system, it can be assumed that
the resulting output F [u] is zero, and therefore can be used as
the initial state for the recursive DFT. At the point where t = N ,
the resulting output matches the DFT output F [u] for window of
length N . Further samples can now be added and the resulting up-
dated output computed. If the recursive DFT were implemented
sequentially, the cost would be in the order of O (N2), however if
concurrency were exploited by using many smaller processing ele-
ments, the cost reduces to O (N), for computing a DFT of length N ,
if N processing elements are used [9].

3. Multi-sample updating

The work discussed in Section 2 only considers a single sample
input per iteration (real or complex) based on a sampling rate with
period Ts (and defined by the minimal processing time required to
compute an update based on a single new sample). Processing of
data assumes that the period (Ts) between input samples matches
the processing latency of the underlying system computing the up-
date to ensure no loss of information.

It would be beneficial to explore the possibility to capture mul-
tiple data samples at a scaled sampling rate ( Ts

k ) within the pro-
cessing time, and present an updated spectra based not on one
sample, but rather on k samples, where k represents a sampling
rate scaling factor (k ∈ Z ). Eq. (3) expresses a single sample based
update in terms of the Fourier time shift property and the cur-
rent DFT output vector Fcurrent[u] for point u. If a higher sampling
rate were used, instead of fout and f in representing a single sam-
ple, they would represent multiple samples acquired during the
processing latency inherent in computing Eq. (3). The total sam-
ple pairs represented by fout and f in are stipulated by the value of
k, and are processed in the same manner, except for the value of
the complex exponential (which is determined as a function of the
time shift).

Computing an update using two sets of samples (k = 2) in-
volves shifting in two new samples ( f in1 and f in2 ), and shifting
out two samples ( fout1 and fout2 ) (required to maintain a constant
window length). The difference between the incoming and outgo-
ing sample pairs requires multiplication by W (s+1)u

N where s = 0,1
(s ∈ Z ), respectively, followed by summation. s will take on two
values in this example, as two samples are shifted in and out, and
each difference pair requires multiplication by a different phase.
Re-writing Eq. (3) for any k:

Fnew[u] = [
Fcurrent[u]]W ku

N

+
k−1∑
s=0

[
f in(k−s) − fout(k−s)

N

]
W (s+1)u

N (5)

Two key points should be noted from Eq. (5). Firstly, the exist-
ing computed spectrum is now multiplied by a complex exponen-
tial influenced by the shifting parameter k. Secondly, the incoming
and outgoing samples are handled in pairs, and multiplied by a
complex exponential determined relative to the shift the pair of
samples experienced. It should also be noted that when comput-
ing this step, the inherent parallelism can be exploited minimis-
ing the additional overhead required if processing resources per-
mit it. The computation in Eq. (5) is suitable for both finite-bit
and floating-point arithmetic, however the use of error correction
would be needed to maintain a constant error rate when imple-
menting finite-bit arithmetic. The following section details this in-
clusion.

3.1. Error correction

The recursive DFT as expressed in Eq. (3) allows for frequent
spectral updating when a single sample is added, however, com-
putational errors can accumulate if implemented with finite-bit
arithmetic. The error is produced as a result of a quantisation and
arithmetic round-off in the complex exponentials used per point,
as well as a round-off used in the storage and computation of the
DFT update. Furthermore, the error grows without bound due to
the recursive nature of the algorithm [3,10].

It is possible to model and track errors as they develop, al-
lowing on-the-fly dynamic error correction per point [11,5]. The
correction vector (Eu) for a single sample shift is expressed in
Eq. (6) for iteration l at DFT point u [5]:

Eu[l + 1] = σu Fcurrent[l] + σu

[
f in − fout

N

]
+ W u

N Eu[l] (6)

where:

σu = Ŵ u
N − W u

N (7)

and:

W u
N is the complex twiddle factor and

Ŵ u
N is the finite-bit approximation of W u

N
Fcurrent is the current DFT point output
fout, f in are the outgoing and incoming samples

Modifying Eq. (6) to handle multiple input sample pairs pro-
duces:

Eu[l + 1] = σku Fcurrent[l] +
k−1∑
s=0

σ(s+1)u

[
f in(k−s) − fout(k−s)

N

]

+ W ku
N Eu[l] (8)

where:

σku = Ŵ ku
N − W ku

N (9)

and

σ(s+1)u = Ŵ (s+1)u − W (s+1)u (10)
N N



JID:YDSPR AID:1504 /FLA [m5Gv1.5; v 1.114; Prn:31/10/2013; 8:57] P.3 (1-5)

A. van der Byl, M.R. Inggs / Digital Signal Processing ••• (••••) •••–••• 3
Table 1
Sequential computational costs for k = 1,2,4,8. All processing times shown are rel-
ative to k = 1, and indicate the increase in overhead when additional sample pairs
are computed.

DFT length 32 64 128 256 512

k = 1 1 1 1 1 1
k = 2 1.11× 1.11× 1.10× 1.11× 1.09×
k = 4 1.15× 1.14× 1.14× 1.14× 1.12×
k = 8 1.21× 1.20× 1.20× 1.19× 1.27×

To compute an error correction update based on the inclusion
of additional sample pairs requires the same set of multiple com-
plex exponentials as used in the spectral update. The difference
lies in the use of the remaining error from the previous itera-
tion as well the difference in the complex exponentials required
for each shift of the newer samples. Practically, the difference (σku
and σ(s+1)u) still requires a finite-bit holding registers, however
these registers can permit all bits to be allocated to precision, and
therefore are of higher accuracy.

3.2. Processing cost

Assessing and comparing the requirements to compute Eq. (5)
compared to Eq. (3) shows that the difference lies in the growth in
the number of input–output sample pairs, and the multiplication
of the respective complex exponential. The complex exponential is
determined by the relative shift each sample pair has experienced,
and therefore needs to be computed independently. The summa-
tion of all products is later performed and summed to the product
of the current spectral output point (Fcurrent[u]) to complete the
update.

The algorithm is inherently parallel, and can be computed as
such, with the exception of the final summation stage. The update
can be performed using floating-point arithmetic if appropriate
resources are available, or alternatively fixed-point processing on
platforms such as FPGA’s could be used. The discussion from this
point will consider only fixed-point computations, and will high-
light results achievable in practise.

In our initial work [5,9], we have detailed the flexibility of
this algorithm for a single sample input–output pair, and showed
a parallel FPGA implementation for fixed-point arithmetic which
included dynamic error correction to bound errors. The inclusion
of additional samples would require additional processing for the
newer sample pairs that are shifted in and out. This additional
processing cost could be masked through parallelism if resources
permitted, however can also be computed sequentially.

To assess the processing overhead, a worst-case sequential ap-
proach was adopted for testing. The computation of each DFT point
u was computed using 32-bit signed arithmetic, where 24-bits
were reserved for precision, and the error correction threshold
fixed at 2−12 [5]. Various shift levels were implemented (k =
1,2,4,8), and an average computational time was computed per
shift value. In this assessment, the time factor of interest is the ra-
tio of processing overhead increase per shift with respect to k = 1,
due to the additional multiplications and summations required. To
form the comparison, the time required to compute an update for
k = 1 was used as a reference for all subsequent k values. The re-
sults are shown in Table 1.

Table 1 shows the computational increase with respect to the
processing latency obtained for k = 1 (performed sequentially). The
processing was performed using Matlab on an Intel i7 processor,
using a non-optimal software implementation. Interestingly, the
increase in processing cost is sub-linear, indicating a marginal in-
crease in cost overhead when additional samples are processed. It
should be noted that increasing the DFT length will increase the
processing overhead overall, however the results in Table 1 indi-
Fig. 1. Sampling rate diagram for k = 1,2 and 4. The solid dots represent sampling
at a rate of k = 1. The empty dots represent the additional samples acquired for
k = 2 and k = 4.

cate the relative increase in computing a single DFT point when
additional samples are included. It can be seen that the additional
cost for various k values remain on par irrespective of the DFT
length. An increase in processing overhead is not ideal in most
situations, however should be viewed with context of sampling
rates and signal bandwidths (Section 3.3 discusses the advantage
in higher sampling rates over the increase of computational cost).

The increase in processing time for a varied k does not come
without limitations. To ensure a buffer overrun does not occur, it is
important to make sure the data throughput can be handled at all
stages. If the latency increases stipulated in Table 1 are used, data
will be lost due to overflow, as the input data rate versus process-
ing the data given the additional sample pairs is not synchronised.
To avoid this pitfall, the latency increase for a given value of k
needs to be known.

Using an example of k = 4, a DFT length of 256 takes approx-
imately 1.14× longer to compute the additional samples. Using
actual numbers, if the latency was 1 ms for k = 1, the latency
would be 1.14 ms for k = 4. To ensure consistency, the maximum
rate for k = 1 should be scaled by the difference of 2 − 1.14 = 0.86
in this case. Stated differently, the new maximum sampling rate for
k = 1 should be 86% of the original sampling rate for k = 1. This
ensures that when k = 4, the processing time required to produce
an output will not exceed the time taken to capture four samples.
This concept carries for any k value, and is illustrated in Fig. 1.

3.3. Bandwidth gain

The results discussed in this work have initially concentrated
on shifting values of k = 1,2,4,8, however, the values for k can
extend beyond these values shown here, and are limited by pro-
cessing hardware capabilities. Focusing on the results shown in
Table 1, a value of k = 1 indicates the nominal sampling rate possi-
ble based on the processing latency to compute an update on one
new sample. Higher values for k indicate scaled sampling rates,
and are oversampling factors.

The Shannon–Nyquist criterion stipulates that the minimal
sampling rate for any band-limited signal should be twice the
highest frequency component resident in that signal. Increasing
the sampling rate by definition implies that a signal of wider band-
width may be captured, and in context to this work, increasing k
would imply that a signal of wider bandwidth may now be pro-
cessed provided hardware permits adjustable sampling rates.

This introduces an interesting trade-off as the higher the value
of k, the larger the processing overhead, however, the larger k is,
the wider the permissible signal bandwidth. To illustrate the signal
bandwidth gain, consider f [n], the sum of three linearly sweeping
chirp signals: 0–5 MHz; 10 MHz–15 MHz; 25 MHz–35 MHz. In
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this experiment, the value of k = 1 equates to a sampling rate of
25 MHz, and hence a maximum permissible signal frequency of
12.5 MHz.

An anti-aliasing filter is first applied to band limit the sig-
nal prior to sampling. Changing k = 2 implies a new sampling
rate of 45 MHz, with a maximum permissible signal frequency of
22.5 MHz (and not 50 MHz due to the increase in processing over-
head which limits the sampling rate scaling). This dataset is used
for all cases of k, and is expressed using a finite-bit set as indicated
previously.

Each processing run for k = 1,2,4,8 differs only in the cut-off
frequency of the anti-aliasing filter, and the number of samples
available in the dataset. The number of processing iterations re-
mains constant however, as multiple samples are computed simul-
taneously for a DFT update. Fig. 2 illustrates for k = 1,2,4 in (a),
(b), and (c) respectively for a DFT length of 256.

Analysing Fig. 2, the three distinct chirp signals become evi-
dent as the sampling rate is increased. The three sub-figures (a, b
and c) in Fig. 2 show a time–frequency plot of the generated chirp
signals, and represent the sampling rate increase for k = 1,2,4
respectively. As k increases, the cut-off frequency is relaxed, per-
mitting a wider signal bandwidth to be tolerated without aliasing.
The benefit in signal bandwidth gain is apparent, however the
signal bandwidth improvement with respect to the associated pro-
cessing cost should be examined. This relationship is discussed in
Section 3.4.

It is also worthwhile mentioning the time–frequency plots
shown in Fig. 2 (a, b and c). A significant benefit to the recursive
sliding discrete Fourier transform is availability of both time and
frequency information while analysing a signal. The window used
for the transform would not cover all time, and it is possible to re-
solve changes in frequency spectra as the window shifts over the
signal of interest with respect to time. The illustrations in Fig. 2
display the change in frequency as the discrete time window shifts
across the signal (linear combination of chirp signals in this case).
The window length remains fixed, and only the number of samples
that are removed and replaced per iteration changes as the value
of k changes. Since the number of samples increases per processing
iteration, and the latency does not scale linearly with the increase
in k, a wider bandwidth can be processed with a minimal increase
in processing cost.

3.4. Signal bandwidth gain-to-cost ratio

The inclusion of additional samples captured at a higher sam-
pling rate provides a useful benefit to any spectral decomposition.
Processing each new sample on a sample-by-sample basis provides
the highest time–frequency resolution for the given dataset, how-
ever comes at a processing cost, as the hardware is required to
execute with a latency inversely proportional to acquisition rate.

If a lower time–frequency resolution can be tolerated, and a
higher sampling rate required, a trade-off is possible. Viewing this
in the light of signal bandwidth improvement, for k = 4, which
indicates a sampling rate increase by a factor of 3.51, the signal
bandwidth can also be improved by a factor of 3.51 at a process-
ing latency cost of approximately 1.14× the latency for processing
a single sample input–output pair. Table 2 lists the possible signal
bandwidth gain for various k values. It should be noted the cost
incurred in the processing overhead will define the signal band-
width gain in a given system. If the additional cost can be masked
through parallelism, the signal bandwidth scaling will more closely
match k, providing a closer approximation to linear scaling.
Fig. 2. Time–frequency representation of the three generated chirp signals for k =
1,2,4. Each plot represents a different sampling rate and signal bandwidth.

Table 2
Bandwidth gain with respect to number of input samples de-
fined by k. As k is increased, the additional overhead places a
sampling constraint which prevents the sampling rate scaling
linearly.

k Signal bandwidth improvement

1 1×
2 1.8×
4 3.51×
8 6.72×

4. Conclusion

This paper provides an extension to the theory of recursive
Fourier transforms, and proposes a method to frequently update
the spectral decomposition of a signal when acquired at rates
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faster than the single sample processing capabilities of the un-
derlying hardware. A single sample update system provides the
highest time–frequency resolution, but has a data acquisition con-
straint implied by the processing throughput. To overcome this
boundary, multiple samples may be acquired during the processing
latency period and an update computed with increase in over-
head in the region of 1.2× the original processing cost. The higher
sampling rates in turn enable wider signal bandwidths to be ac-
commodated and analysed, and this work shows the improvement
in signal bandwidth out-weighs the additional processing costs.
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