
Fuzzy Sets and Systems 157 (2006) 1260–1275
www.elsevier.com/locate/fss

Sequential Adaptive Fuzzy Inference System (SAFIS) for nonlinear
system identification and prediction

Hai-Jun Rong, N. Sundararajan∗, Guang-Bin Huang, P. Saratchandran
School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Singapore

Available online 18 January 2006
Received 7 April 20006; received in revised form 17 November 2006; accepted 19 December 2006

Abstract

In this paper, a Sequential Adaptive Fuzzy Inference System called SAFIS is developed based on the functional equivalence
between a radial basis function network and a fuzzy inference system (FIS). In SAFIS, the concept of “Influence” of a fuzzy rule
is introduced and using this the fuzzy rules are added or removed based on the input data received so far. If the input data do not
warrant adding of fuzzy rules, then only the parameters of the “closest” (in a Euclidean sense) rule are updated using an extended
kalman filter (EKF) scheme. The performance of SAFIS is compared with several existing algorithms on two nonlinear system
identification benchmark problems and a chaotic time series prediction problem. Results indicate that SAFIS produces similar or
better accuracies with less number of rules compared to other algorithms.
© 2006-Elsevier B.V. All rights reserved.

Keywords: Sequential adaptive fuzzy inference system (SAFIS); GAP–RBF; GGAP–RBF; “Influence” of a fuzzy rule; Extended Kalman filter

1. Introduction

It is well known that Fuzzy Inference Systems (FIS) can be used to approximate closely any nonlinear input–
output mapping by means of a series of if–then rules [9]. In the design of FIS, there are two major tasks, viz.,
the structure identification and the parameter adjustment. Structure identification determines the input–output space
partition, antecedent and consequent variables of if–then rules, number of such rules, and initial positions of membership
functions. The second task of parameter adjustment involves realizing the parameters for the fuzzy system structure
determined in the previous step [15].

Recently, the functional equivalence between a RBF neural network and a FIS (under certain conditions [8]) have
been exploited by many researchers for carrying out the above two tasks [14,4,10,18,13]. These schemes utilize the
learning capabilities of the RBF for changing the rules as well as adjusting the parameters since the hidden neurons of
the RBF networks are related to the fuzzy rules.

These methods can be broadly divided into two classes namely batch learning schemes and sequential learning
schemes. In batch learning, it is assumed that the complete training data are available before the training commences.
The training usually involves cycling the data over a number of epochs. In sequential learning, the data arrive one by

∗ Corresponding author. Tel.: +65 6790 5027; fax: +65 6793 3318.
E-mail address: ensundara@ntu.edu.sg (N. Sundararajan).

http://www.elsevier.com/locate/fss
mailto:ensundara@ntu.edu.sg

1261

one and after the learning of each data it is discarded and the notion of epoch does not exist. In practical applications,
new training data arrive sequentially and to handle this using batch learning, one has to retrain the network all over
again, resulting in large training time.

Hence, in these cases, sequential learning algorithms are generally preferred over batch learning algorithms as they
do not require retraining whenever a new data is received. Compared with the batch learning algorithms, the sequential
learning algorithm which is discussed in this paper, i.e. SAFIS, has the following distinguishing features [7]:

(1) All the training observations are sequentially (one-by-one) presented to the system.
(2) At any time, only one training observation is seen and learned.
(3) A training observation is discarded as soon as the learning procedure for that particular observation is completed.
(4) The learning system has no prior knowledge as to how many total training observations will be presented.

Thus, if one strictly applies the above features of the sequential algorithms, many of the above algorithms are not
sequential. One major bottleneck seems to be that they need the entire training data ready for training before the
training procedure starts and thus they are not really sequential. This point is highlighted in a brief review of the
existing algorithms given below.

Lee and Shin [14] have used the least-square method and genetic algorithm to construct fuzzy systems when all the
data are available and hence this method is not sequential.

A significant contribution to sequential learning in RBF network was made by Platt [17] through the development
of Resource Allocation Network (RAN). In RAN, the network starts with no hidden neurons but adds hidden neurons
based on the novelty of the input data. Most of the recent algorithms for adaptively creating fuzzy systems are based
on the ideas of RAN. These algorithms claim to be “on-line” algorithms and if one looks closely at them, they are not
sequential as per the above distinguishing features.

A hierarchically self-organizing approach proposed by Cho and Wang [4] automatically generates fuzzy rules without
predefining the number of fuzzy rules based on the error and distance criterion of fuzzy basis functions. However, the
algorithm requires cycling the whole training data over a number of learning cycles (epochs) and hence it is not a truly
sequential learning scheme.

Recently, a self-constructing neural fuzzy inference network (SONFIN) has been proposed by Juang and Lin [10]
in which the fuzzy rules are extracted online from the training data. For adding a new fuzzy rule, SONFIN utilizes the
distance criterion between the new input data and the center of the Gaussian membership function in the existing fuzzy
rules. Although this algorithm is sequential in nature, it does not remove the fuzzy rules once created even though that
rule is not effective. This may result in a structure where the number of rules may be large.

In most of the real applications, not all fuzzy rules contribute significantly to the system performance during the
entire time period. A fuzzy rule may be active initially, but may later contribute little to the system output. For this
reason, the insignificant fuzzy rules have to be removed during learning to realize a compact fuzzy system structure.
Using the ideas of adding and pruning hidden neurons to form a minimal RBF network in [20], a hierarchical on-line
self-organizing learning algorithm for dynamic fuzzy neural networks (DFNN) has been proposed in [18]. Another
on-line self-organizing fuzzy neural network (SOFNN) proposed by Leng et al. [13] also includes a pruning method.
The pruning method utilizes the optimal brain surgeon (OBS) approach to determine the importance of each rule.
However, in these two algorithms the pruning criteria need all the past data received so far. Hence, they are not strictly
sequential and further requires increased memory for storing all the past data.

Angelov and Filev [1] have proposed an evolving Takagi–Sugeno model (eTS) that recursively updates TS model
structure based on the potential of the input data (defined based on its distances to all other data points received so far).
In this algorithm, a new rule is added when the potential of the new data is higher than the potential of the existing rules
or a new rule is modified when the potential of the new data is higher than the potential of the existing rules and the
new data are close to an old rule. This is a truly sequential learning algorithm. However, the algorithm cannot simplify
the rule base during learning by ignoring the rules which may become irrelevant with the future data samples when
the data sample sequentially arrives. A simplified version of the eTS learning algorithm that simplifies the rule base,
called the simpl_eTS, is proposed by Angelov and Filev [2]. The algorithm utilizes the concept of the scatter, which is
similar to the notion of potential but computationally more efficient. The algorithm can simplify the rule base to make
the rules representative based on the population of each rule determined by the number of the data samples that belong
to a particular cluster. If the population of a rule is less than 1% of the total data at the moment of appearance of a rule,
the rule is ignored from the rule base by setting its firing strength to zero.

1262

In this paper, a SAFIS is developed to realize a compact fuzzy system with lesser number of rules. SAFIS uses
the idea of functional equivalence between a RBF neural network and a fuzzy inference system. Here, SAFIS uses
the GAP–RBF neural network recently proposed by Huang et al. [6]. The SAFIS algorithm consists of two aspects:
determination of the fuzzy rules and adjustment of the premise and consequent parameters in fuzzy rules.

SAFIS uses the concept of influence of a fuzzy rule to add and remove rules during learning. SAFIS starts with no
fuzzy rules and based on the data builds up a compact rule base. During the learning, only the current data are made
use of and there is no need to store all the past data. The influence of a fuzzy rule is defined as its contribution to the
system output in a statistical sense. Here, we have derived an expression for this for the case where the input data are
uniformly distributed.

The parameter adjustment is done using a winner rule strategy where the winner rule is defined as the one closest to
the input data and the parameter update is done using an EKF mechanism.

It should be noted that SAFIS is a truly sequential learning algorithm.
In order to evaluate the performance of SAFIS algorithm with the others, a comparison is carried out on two nonlinear

system identification problems and one chaotic time series (Mackey–Glass) prediction problem. The comparison is
done in terms of accuracy and the complexity (the number of rules) of the fuzzy system. Results indicate SAFIS
produces similar or better accuracies with a smaller number of rules for the FIS.

This paper is organized as follows. Section 2 presents the structure of SAFIS along with the definition for the
“influence” of fuzzy rules. This section also presents the details of the learning algorithm of the proposed SAFIS.
Section 3 presents a quantitative performance comparison for SAFIS with other algorithms based on several benchmark
problems in the nonlinear identification and prediction area. Section 4 summarizes the conclusions from this study.

2. SAFIS—architecture and algorithm

Generally, a wide class of MIMO nonlinear dynamic systems can be represented by the nonlinear discrete model
with an input–output description form:

y(n) = f[y(n − 1), y(n − 2), . . . , y(n − k + 1); u(n), u(n − 1), . . . , u(n − p + 1)], (1)

where y is a vector containing Ny system outputs, u is a vector for Nu system inputs; f is a nonlinear vector function,
representing Ny hypersurfaces of the system, and k and p are the maximum lags of the output and input, respectively.

Selecting [y(n − 1), . . . , y(n − k + 1); u(n), u(n − 1), . . . , u(n − p + 1)], y(n) as the fuzzy system’s input–output
xn, yn at time n, the above equation can be put as

yn = f(xn). (2)

The aim of the new SAFIS algorithm is to approximate f such that

ŷn = f̂(xn), (3)

where ŷn is the output of SAFIS. This means that the objective is to minimize the error between the system output and
the output of SAFIS, ‖yn − ŷn‖. Before describing the details of the algorithm, the structure of SAFIS network is first
described below.

The structure of SAFIS illustrated by Fig. 1 consists of five layers to realize the following fuzzy rule model:
Rule k: if (x1 is A1k) · · · (xNx is ANxk), then (ŷ1 is a1k) · · · (ŷNy is aNyk) where ajk(j = 1, 2, . . . , Ny, k =

1, 2, . . . , Nh) is a constant consequent parameter in rule k, Aik(i = 1, 2, . . . , Nx) is the membership value of the
ith input variable xi in rule k, Nx is the dimension of the input vector x(x = [x1, . . . , xNx]T), Nh is the number of
fuzzy rules, Ny is the dimension of the output vector ŷ(ŷ = [ŷ1, . . . , ŷNy]T). In SAFIS, the number of fuzzy rules Nh

varies. Initially, there is no fuzzy rule and then during learning fuzzy rules are added and removed.
Layer 1: In layer 1, each node represents an input variable and directly transmits the input signal to layer 2.
Layer 2: In this layer, each node represents the membership value of each input variable. SAFIS utilizes the function

equivalence between a RBF network and a FIS and thus its antecedent part (if part) in fuzzy rules is achieved by
Gaussian functions of the RBF network. The membership value Aik(xi) of the ith input variable xi in the kth Gaussian

1263

Fig. 1. Structure of SAFIS.

function is given by

Aik(xi) = exp

(
− (xi − �ik)

2

�2
k

)
, k = 1, 2, . . . , Nh, (4)

where Nh is the number of the Gaussian functions, �ik is the center of the kth Gaussian function for the ith input
variable, �k is the width of the kth Gaussian function. In SAFIS, the width of all the input variables in the kth Gaussian
function is the same.

Layer 3: Each node in the layer represents the if part of if–then rules obtained by the sum–product composition and
the total number of such rules is Nh. The firing strength (if part) of the kth rule is given by

Rk(x) =
Nx∏
i=1

Aik(xi) = exp

(
−

Nx∑
i=1

(xi − �ik)
2

�2
k

)
= exp

(
−‖x − �k‖2

�2
k

)
. (5)

Layer 4: The nodes in the layer are named as normalized nodes whose number is equal to the number of the nodes
in third layer. The kth normalized node is given by

R̄k = Rk(x)∑Nh

k=1 Rk(x)
. (6)

Layer 5: Each node in this layer corresponds to an output variable, which is given by the weighted sum of the output
of each normalized rule. The system output is calculated by

ŷ =
∑Nh

k=1 Rk(x)ak∑Nh

k=1 Rk(x)
, (7)

where ŷ = [ŷ1, ŷ2, . . . , ŷNy]T, ak = [a1k, a2k, . . . , aNyk]T.

1264

2.1. “Influence” of a fuzzy rule

As per Eq. (7), the contribution of the kth rule to the overall output for an input observation xl is given by

E(k, l) = |ak| Rk(xl)∑Nh

k=1 Rk(xl)
. (8)

Then the contribution of the kth rule to the overall output based on all input data N received so far is obtained by

E(k) = |ak|
∑N

l=1 Rk(xl)∑Nh

k=1

∑N
l=1 Rk(xl)

. (9)

Dividing both the numerator and denominator by N in Eq. (9), the equation becomes

E(k) = |ak|
∑N

l=1 Rk(xl)/N∑Nh

k=1

∑N
l=1 Rk(xl)/N

. (10)

Using the significance concept of GAP–RBF [6], the influence of the kth fuzzy rule is defined as its statistical
contribution to the overall output of SAFIS. When N → ∞ the influence of the kth rule is given by

Einf(k) = lim
N→∞ E(k) = lim

N→∞ |ak|
∑N

l=1 Rk(xl)/N∑Nh

k=1

∑N
l=1 Rk(xl)/N

. (11)

Calculation of Einf(k) using the above equation requires the knowledge of (xl , yl), l = 1, . . . , N . In the truly sequential
learning scheme, this is not possible. An alternate way of calculating Einf(k) is by using the distribution of the inputs
and follows the same approach as introduced in [7]. In order to compute Einf(k) one has to compute first Ek defined by

Ek = lim
N→∞

∑N
l=1 Rk(xl)

N
. (12)

Assume that the observations (xl , yl), l = 1, . . . , are drawn from a sampling range X with a sampling density
function p(x). Consider a situation where N observations have been learned by the sequential learning scheme. Let the
sampling range X be divided into M small spaces �j , j = 1, . . . , M . The size of �j is represented by S(�j). Since
the sampling density function is p(x) there are around N · p(xj) · S(�j) samples in each �j , where xj is any point
chosen in �j . When the number of input observations N is large, �j is small. From Eq. (12), we have

Ek ≈ lim
M→∞

∑M
j=1 Rk(xj) · Np(xj) · S(�j)

N

= lim
M→∞

∑M

j=1
Rk(xj) · p(xj) · S(�j)

=
∫

X

Rk(x)p(x) dx

=
∫

X

exp

(
−‖x − �k‖2

�2
k

)
p(x) dx. (13)

If the distribution of the Nx attributes (x1, . . . , xi, . . . , xNx)
T of observations x′s are independent from each other,

the density function p(x) of x can be written as: p(x) = ∏Nx

i=1 pi(xi), where pi(x) is the density function of the ith
attribute xi of observations. In this case, Eq. (13) can be rewritten as

Ek =
∫

· · ·
∫

X

exp

(
−‖x − �k‖2

�2
k

)
p(x) dx

=
Nx∏
i=1

(∫ bi

ai

exp

(
−‖x − �k,i‖2

�2
k

]
)

pi(x) dx

)
, (14)

1265

where Nx is the dimension of the input space X and (ai, bi) the interval of the ith attribute xi of observations,
i = 1, . . . , Nx .

Eq. (14) involves an integration of the probability density function p(x) in the sampling range X. When the input
samples are uniformly drawn from a range X, the sampling density function p(x) is given by p(x) = 1/S(X), where
S(X) is the size of the range X given by S(X) = ∫

x 1 dx. Substituting for p(x) in Eq. (13) we get

Ek =
∫

X

exp

(
−‖x − �k‖2

�2
k

)
1

S(X)
dx. (15)

Note that in general the width �k of a rule k is much less than the size of range X, the above equation can be approximated
as

Ek ≈ 1

S(X)

(
2
∫ +∞

0
exp

(
−x2

�2
k

)
dx

)Nx

= �Nx/2�Nx

k

S(X)

≈ (1.8�k)
Nx

S(X)
. (16)

Thus, based on Eq. (16) the influence of the kth rule is given by

Einf(k) = |ak| (1.8�k)
Nx∑Nh

k=1(1.8�k)Nx

. (17)

Remark. The significance of a neuron proposed in GAP–RBF [6] is defined based on the average contribution of
an individual neuron to the output of the RBF network. Under this definition, one may need to estimate the input
distribution range S(X). However, the influence of a rule introduced in this paper is different from the significance of a
neuron proposed in GAP–RBF [6]. In fact, the influence of a neuron is defined as the relevant significance of the neuron
compared to summation of significance of all the existing RBF neurons. As seen from Eq. (17), with the introduction
of influence one need not estimate the input distribution range S(X) and the implementation has been simplified.

2.2. SAFIS algorithm

The learning algorithm of SAFIS consists of two aspects: determination of fuzzy rules and adjustment of the premise
and consequent parameters in fuzzy rules. SAFIS can automatically add and remove fuzzy rules using ideas similar to
GAP–RBF [6] for hidden neurons. A description of dynamically adding and removing the fuzzy rules along with the
details of parameter adjustment when there are no addition of rules is given below.

2.2.1. Adding of fuzzy rules
SAFIS begins with no fuzzy rules. As inputs xn, yn (n is the time index) are received sequentially during learning,

growing of fuzzy rules is based on the following two criteria which are distance criterion and the influence of the new
added fuzzy rule Nh + 1:⎧⎪⎨

⎪⎩
‖xn − �nr‖ > �n,

Einf(Nh + 1) = |en| (1.8�‖xn − �nr‖)Nx∑Nh+1
k=1 (1.8�k)Nx

> eg,
(18)

where �n, eg are thresholds to be selected appropriately, xn is the latest input data, �nr is the center of the fuzzy rule
nearest to xn. eg is the growing threshold and is chosen according to the desired accuracy of SAFIS. en = yn − ŷn, yn

is the true value, ŷn is the approximated value, � is an overlap factor that determines the overlap of fuzzy rules in the
input space, �n is the distance threshold which decays exponentially and is given by

�n = max
{
�max × �n, �min

}
, (19)

1266

where �max, �min are the largest and smallest length of interest, � is the decay constant. The equation shows that initially
it is the largest length of interest in the input space which allows fewer fuzzy rules to coarsely learn the system and
then it decreases exponentially to the smallest length of interest in the input space, which allows more fuzzy rules to
finely learn the system.

2.2.2. Allocation of antecedent and consequent parameters
When the new fuzzy rule Nh + 1 is added, its corresponding antecedent and consequent parameters are allocated as

follows:⎧⎨
⎩

aNh+1 = en,

�Nh+1 = xn,

�Nh+1 = �‖xn − �nr‖.
(20)

2.2.3. Parameter adjustment
In parameter modification, SAFIS utilizes a winner rule strategy similar to the work done by Huang et al. [6]. The

key idea of the winner rule strategy is that only the parameters related to the selected winner rule are updated by the
EKF algorithm in every step. The ‘winner rule’ is defined as the rule that is closest (in the Euclidean distance sense) to
the current input data as in [6]. As a result, in SAFIS, a fast computation is achieved.

The parameter vector existing in all the fuzzy rules is given by

�n = [
�1 · · · �nr · · · �Nh

]T
= [

a1, �1, �1, . . . , anr , �nr , �nr , . . . , aNh
, �Nh

, �Nh

]T
, (21)

where �nr = [anr , �nr , �nr] is the parameter vector of the nearest fuzzy rule and its gradient is derived as follows:

ȧnr = �ŷn

�anr

= �ŷn

�Rnr

�Rnr

�anr

= Rnr∑Nh

k=1 Rk

,

�̇nr = �ŷn

��nr

= �ŷn

�Rnr

�Rnr

��nr

= anr − ŷn∑Nh

k=1 Rk

�Rnr

��nr

,

�̇nr = �ŷn

��nr

= �ŷn

�Rnr

�Rnr

��nr

= anr − ŷn∑Nh

k=1 Rk

�Rnr

��nr

,

�Rnr

��nr

= 2Rnr

xn − �nr

�2
nr

,

�Rnr

��nr

= 2Rnr

‖xn − �nr‖2

�3
nr

. (22)

After obtaining the gradient vector of the nearest fuzzy rule, that is Bnr = [ȧnr , �̇nr , �̇nr]T, EKF is used to update its
parameters as follows:

Kn = Pn−1Bn[Rn + BT
n Pn−1Bn]−1,

�n = �n−1 + Knen,

Pn = [IZ×Z − KnB
T
n]Pn−1 + qIZ×Z, (23)

where q is a scalar that determines the allowed step in the direction of the gradient vector, Z is the dimension of
parameters to be adjusted. When a new rule is added, the dimension of Pn increases to(

Pn−1 0
0 p0IZ1×Z1

)
, (24)

where Z1 is the dimension of the parameters introduced by the newly added rule, p0 is an initial value of the uncertainty
assigned to the newly allocated rule. In this paper, p0 is set to 1.0 for all the examples.

1267

2.2.4. Removing of a fuzzy rule
If the influence of rule k is less than a certain pruning threshold ep, the rule k is insignificant to the output and should

be removed. The pruning threshold ep is chosen a priori. Given the pruning threshold ep, rule k will be removed if

Einf(k) = |ak| (1.8�k)
Nx∑Nh

k=1(1.8�k)Nx

< ep. (25)

Considering the Gaussian function R(x) = exp(−x2/�2), its first and second derivatives will approach zero much
faster when x moves away from zero. Thus, in EKF the gradient vector of the parameters for all the rules except the
nearest rule will approach zero more quickly than those of the nearest rule:(

Rnr∑Nh

k=1 Rk

,
2(anr − ŷn)Rnr∑Nh

k=1 Rk

xn − �nr

�2
nr

,
2(anr − ŷn)Rnr∑Nh

k=1 Rk

‖xn − �nr‖2

�3
nr

)
.

In this case, one may only need to adjust parameters of the nearest rule without adjusting the parameters of all rules
when a new observation enters and a new rule need not be added. At the same time, all rules need not be checked
for possible pruning. If a new observation arrives and the growing criteria (18) is satisfied, a new rule will be added.
The existing rules will maintain their influence because their parameters remain unchanged after learning the new
observation. Simultaneously, the newly added rule is also influencing and therefore it is not necessary to check for
pruning after a new rule is added. If the growing criteria (18) is not satisfied after a new observation arrives, a new rule
will not be added and only the parameters of the nearest rule will be modified. As such only the nearest rule needs to
be checked for pruning.

The SAFIS algorithm is summarized below:
Given the growing and pruning thresholds eg, ep, for each observation (xn, yn), where xn ∈ RNx , yn ∈ RNy and

n = 1, 2, . . . , do

(1) compute the overall system output:

ŷn =
∑Nh

k=1 akRk(xn)∑Nh

k=1 Rk(xn)
,

Rk(xn) = exp

(
− 1

�2
k

‖xn − �k‖2

)
, (26)

where Nh is the number of fuzzy rules.
(2) calculate the parameters required in the growth criterion:

�n = max{�max�
n, �min}, (0 < � < 1),

en = yn − ŷn (27)

(3) apply the criterion for adding rules:

If ‖xn − �nr‖ > �n and Einf(Nh + 1) = |en| (1.8�‖xn−�nr‖)Nx∑Nh+1
k=1 (1.8�k)

Nx
> eg,

allocate a new rule Nh + 1 with

aNh+1 = en,

�Nh+1 = xn,

�Nh+1 = �‖xn − �nr‖. (28)

Else
adjust the system parameters anr , �nr , �nr for the nearest rule only
by using the EKF method.

1268

Table 1
Effects of parameter eg on system performance (number of rules and the testing RMS error) under different �max values and � = 1.0

�max eg

0.001 0.005 0.01 0.05

1.0 (61, 0.0198) (17, 0.0385) (11, 0.0535) (2, 0.0912)
5.0 (45, 0.0233) (17, 0.0385) (11, 0.0535) (2, 0.0912)

10.0 (41, 0.0249) (14, 0.0386) (9, 0.0461) (2, 0.0912)

Table 2
Effects of parameter eg on system performance (number of rules and the testing RMS error) under different � values and �max = 10.0

� eg

0.001 0.005 0.01 0.05

1.0 (41, 0.0249) (14, 0.0386) (9, 0.0461) (2, 0.0912)
1.5 (50, 0.0350) (18, 0.0586) (15, 0.0598) (3, 0.1382)
2.0 (52, 0.0557) (25, 0.0902) (15, 0.1384) (3, 0.1391)

check the criterion for pruning the rule:

If Einf(nr) = |anr | (1.8�nr)
Nx∑Nh

k=1(1.8�k)
Nx

< ep

remove the nrth rule
reduce the dimensionality of EKF

Endif
Endif

2.3. Selection of predefined parameters

In SAFIS, some parameters need to be decided in advance according to the problems considered. They include the
distance thresholds (�max, �min, �), the overlap factor (�) for determining the width of the newly added rule, the growing
threshold (eg) for a new rule and the pruning threshold (ep) for removing an insignificant rule. A general selection
procedure for the predefined parameters is given as follows: �max is set to around the upper bound of input variables;
�min is set to around 10% of �max; � is set to around 0.99. ep is set to around 10% of eg . The overlap factor (�) is utilized
to initialize the width of the newly added rule and chosen according to different problems. � is suggested to be chosen
in the range [1.0, 2.0]. The growing threshold eg is chosen according to the system performance. The smaller the eg,
the better the system performance, but the resulting system structure is more complex.

An example is given to illustrate the effects of the parameters (eg, �, �max) on the system structure and performance.
Consider the following two-dimensional sinc function:

z = sinc(x, y) = sin(x) sin(y)

xy
. (29)

In the simulation, 2500 training data pairs (x, y) are drawn from the input range [−10, 10] × [−10, 10]. At the same
time, 100 testing data pairs (x, y) are drawn from the same input range.

The general rule for choosing the parameters (�min, �, ep) are obeyed. �min is set to 10% of �max; � is set to 0.997; ep
is set to the 10% of eg. The parameters eg, �max and � are observed in the range [0.001, 0.05], [1.0, 10.0] and [1.0, 2.0]
respectively, to illustrate their effect on the resulting system structure and testing accuracy. Tables 1 and 2 give the
effects of parameter eg on system performance in terms of number of rules and the testing RMS error under different
� or �max values. From the two tables, it is easy to find that with the increase of eg the number of rules is decreased
and also system performance (testing RMS error) becomes worse with the same � or �max value. Furthermore, it can
be found from the two tables that the resulting system structure and testing accuracy have does not very big change
when the parameter � or �max appears as different values.

1269

3. Performance evaluation of SAFIS

In this section, the performance of SAFIS is evaluated based on two nonlinear system identification problems and
one chaotic time series (Mackey–Glass) prediction problem. For the first system identification problem, performance
of SAFIS is compared with other well known sequential algorithms such as MRAN [20], RANEKF [11], eTS [1],
Simpl_eTS [2] and HybridAlgorithm (HA) [19]. For the second benchmark system identification problem, performance
of SAFIS is compared with MRAN [20], RANEKF [11], eTS [1], Simpl_eTS [2] and SONFIN [10]. For the chaotic
time series prediction problem, the comparison is done with eTS [1], Simpl_eTS [2], RAN [17], ESOM [5] and DENFIS
[12]. In all the studies, the parameters (r,) for eTS and Simpl_eTS are tuned to obtain the best performance.

Performance comparison is done in terms of accuracy and the complexity (the number of rules) of the fuzzy system.
For these problems, the SAFIS algorithm goes through the training data sequentially in a single pass and builds up the
fuzzy inference system by adding and removing the rules along with their parameters. Then its performance is evaluated
on the unseen test data. It should be noted that for other algorithms like HA, ESOM and DENFIS, the training is done
over a number of passes and/or requires the complete data for training (batch training).

3.1. Nonlinear dynamic system identification

Narendra and Parthasarathy [16] have suggested two special forms of the nonlinear system model given in Eqs. (30)
and (31).

Model I:

y(n + 1) = f [y(n), y(n − 1), . . . , y(n − k + 1)] +
p−1∑
i=0

iu(n − i). (30)

Model II:

y(n + 1) = f [y(n), y(n − 1), . . . , y(n − k + 1)] + g[u(n), u(n − 1), . . . , u(n − p + 1)]. (31)

These two models of nonlinear systems have been used here for performance comparison.
Selecting [y(n), y(n − 1), . . . , y(n − k + 1), u(n), u(n − 1), . . . , u(n − p + 1)] and y(n + 1) as the input–output

of SAFIS, the identified model is given by the equation

ŷ(n + 1) = f̂ (y(n), y(n − 1), . . . , y(n − k + 1), u(n), u(n − 1), . . . , u(n − p + 1)), (32)

where f̂ is the SAFIS approximation and ŷ(n + 1) is the output of the SAFIS.

3.1.1. Identification problem 1
The first nonlinear dynamic system to be identified represents model I and is described by Wang and Yen [19]

y(n) = y(n − 1)y(n − 2)(y(n − 1) − 0.5)

1 + y2(n − 1) + y2(n − 2)
+ u(n − 1). (33)

The equilibrium state of the unforced system given by Eq. (33) is (0, 0). As [19], the input u(n) is uniformly selected
in the range [−1.5, 1.5] and the test input u(n) is given by u(n) = sin(2�n/25). For the purpose of training and
testing 5000 and 200 observation data are produced. The different parameter values for SAFIS are chosen as: � =
0.997, �max = 1.0, �min = 0.1, � = 1.0, eg = 0.05, ep = 0.005.

The average performance comparison of SAFIS with MRAN, RANEKF, eTS, Simpl_eTS and HA is shown in Table 3
based on 50 experimental trials. From the table it can be seen that SAFIS obtains similar testing accuracy compared to
MRAN, RANEKF, eTS, Simpl_eTS and HA. However, SAFIS achieves this accuracy with smallest number of rules.
It is worth noting that HA is based on GA iterative learning and is not sequential. The evolution of the fuzzy rules for
SAFIS, MRAN, RANEKF, eTS and Simpl_eTS for a typical run is shown by Fig. 2(a). It can be seen from the figure

1270

Table 3
Results of nonlinear identification problem 1

Methods No. of rules Training RMSE Testing RMSE

SAFIS 17 0.0539 0.0221
MRAN 22 0.0371 0.0271
RANEKF 35 0.0273 0.0297
Simpl_eTS (r = 2.0, 	 = 106) 22 0.0528 0.0225
eTS (r = 1.8, 	 = 106) 49 0.0292 0.0212
HA [19] 28 0.0182 0.0244

0 1000 2000 3000 4000 5000
0

10

20

30

40

50
eTS

RANEKF

MRAN

Simpl_eTS

SAFISN
um

be
r

of
 R

ul
es

Number of Observation

0 200 400 600 800 1000
0

10

20

30

RANEKF
MRAN

eTS

Simpl_eTS

SAFIS

N
um

be
r

of
 R

ul
es

Number of Observation

(a)

(b)

Fig. 2. (a) Rule update process between different algorithms for nonlinear identification problem 1 during the whole observation; (b) Rule update
process between different algorithms for nonlinear identification problem 1 between 0 and 1000 observations.

that SAFIS produces least number of rules. Besides, Fig. 2(b) gives a clear illustration for the rule evolution tendency
between 0 and 1000 observation and shows that SAFIS can automatically add and delete a rule during learning, which
is manifested by increasing and reducing the number of rules by one.

1271

Table 4
Results of nonlinear identification problem 2

Methods No. of rules Testing RMSE

SAFIS 8 0.0116
MRAN 10 0.0129
RANEKF 11 0.0184
Simpl_eTS (r = 0.075, 	 = 106) 18 0.0122
eTS (r = 1.0, 	 = 106) 19 0.0082
SONFIN [10] 10 0.0130

-1.5 -1 -0.5 0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
em

be
rs

hi
p

fu
nc

tio
ns

 o
f i

np
ut

 v
ar

ia
bl

es
 y

(n
)

Input variable y(n)

Fig. 3. Membership functions of input variable y(n) for nonlinear identification problem 2.

3.1.2. Identification problem 2
The second nonlinear dynamic system to be identified represents model II and is described by Juang and Lin [10]

y(n + 1) = y(n)

1 + y2(n)
+ u3(n). (34)

In accordance with [10], the input signalu(n) is given by sin(2�n/100). For the purpose of training and testing 50 000 and
200 observation data are produced. The SAFIS parameter values chosen are: � = 0.997, �max = 2.0, �min = 0.2, � =
2.0, eg = 0.03, ep = 0.003. The input variables y(n), u(n), respectively, follow the uniform sample distribution in the
range [−1.5, 1.5] and [−1.0, 1.0].

Table 4 shows the performance comparison of SAFIS with MRAN, RANEKF, eTS, Simpl_eTS and SONFIN [10].
It can be seen from the table that SAFIS achieves similar accuracy with a lesser number of rules. Figs. 3 and 4 show
the final membership functions of input variables y(n), u(n) achieved by SAFIS. From the two figures, one can clearly
see that the input variable membership functions are distributed in their own entire range. Besides the testing accuracy
of SAFIS is slightly better than those of MRAN, RANEKF, Simpl_eTS and SONFIN, which verifies that the learning
performance of SAFIS is not lost by only modifying the nearest fuzzy rule instead of all fuzzy rules during the learning.

1272

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
em

be
rs

hi
p

fu
nc

tio
ns

 o
f i

np
ut

 v
ar

ia
bl

es
 u

(n
)

Input variable u(n)

Fig. 4. Membership functions of input variable u(n) for nonlinear identification problem 2.

0 10000 20000 30000 40000 50000
0

5

10

15

20 eTS

Simpl_eTS

RANEKF

MRAN

SAFISN
um

be
r

of
 R

ul
es

Number of Observation

Fig. 5. Rule update process between different algorithms for nonlinear identification problem 2.

The evolution of the fuzzy rules for SAFIS, MRAN, RANEKF, eTS and Simpl_eTS is shown by Fig. 5. It can be seen
from the figure that SAFIS is able to add and delete rules during learning and produces least number of rules.

3.2. Mackey–Glass time series prediction

The chaotic Mackey–Glass time series is generated from the following differential equation [12]:

dx(t)

dt
= 0.2x(t − �)

1 + x10(t − �)
− 0.1x(t), (35)

where � = 17 and x(0) = 1.2. For the purpose of training and testing, 6000 samples are produced by means of the
fourth-order Runge–Kutta method with the step size 0.1. The prediction task is to predict the value x(t + 85) from

1273

Table 5
Results of Mackey–Glass time series prediction (without normalizing inputs) using truly sequential learning algorithms

Methods No. of rules Testing NDEI

SAFIS 21 0.380
Simpl_eTS(r = 0.292, 	 = 106) 21 0.376
eTS(r = 0.65, 	 = 106) 99 0.356
RAN [17] 113 0.373

0 500 1000 1500 2000 2500 3000
0

20

40

60

80

100

eTS

Simpl_eTS

SAFIS

N
um

be
r

of
 R

ul
es

Number of Observation

Fig. 6. Rule update process between different algorithms for Mackey–Glass time series prediction (without normalizing inputs) with a single pass.

the input vector [x(t − 18) x(t − 12) x(t − 6) x(t)] for any value of the time t . In order to compare with the results
of [12], the observations between t = 201 and 3200 and the observations between t = 5001 and 5500 are extracted
from the series and used as training and testing data. For this problem, the parameters for SAFIS are selected as
follows: � = 0.98, �max = 1.6, �min = 0.16, � = 1.68, eg = 0.0005, ep = 0.00005. The data follow a uniform sample
distribution in the range [0.4, 1.4].

Table 5 shows the prediction accuracies and the number of rules obtained by SAFIS, eTS, Simpl_eTS, and RAN
without normalizing inputs. For comparison purposes, the prediction accuracy is based on the Non-Dimensional Error
Index (NDEI) defined as the RMSE divided by the standard deviation of the true output values. From the table, it is clear
that all the algorithms produce similar accuracies. But SAFIS and Simpl_eTS achieve this with the smallest number
of fuzzy rules. The evolution of the fuzzy rules for SAFIS, eTS and Simpl_eTS for a single pass is shown in Fig. 6.

It should be noted that both DENFIS and ESOM required the training data to be used several times (more number
of passes) and also need the complete data (not sequential). In order to compare with ESOM and DENFIS, the three
algorithm SAFIS, eTS, Simpl_eTS have also been run with multiple passes and the results are shown in Table 6. It
can be seen from Table 6, all the algorithms produce comparable prediction accuracies but SAFIS obtains this with the
smallest number of rules.

In order to compare with the result of Angelov et al. [2,3] where the inputs are normalized, we have also normalized
the inputs and show the results in Table 7 and Fig. 7. As observed from Table 7, all the algorithms produce similar
accuracies; however, SAFIS obtains the smallest number of fuzzy rules. The evolution of the fuzzy rules for SAFIS,
eTS and Simpl_eTS for a single pass is shown in Fig. 7.

1274

Table 6
Results of Mackey–Glass time series prediction (without normalizing inputs) using multi-pass learning algorithms

Methods No. of rules Testing NDEI

SAFIS (10 pass) 45 0.271
Simpl_eTS (10 pass) (r = 0.292, 	 = 106) 50 0.325
eTS (10 pass) (r = 0.65, 	 = 106) 99 0.202
ESOM [5] 114 0.320
DENFIS [12] 58 0.276

Table 7
Results of Mackey–Glass time series prediction (with normalized inputs) using truly sequential learning algorithms

Methods No. of rules Testing NDEI

SAFIS 6 0.376
Simpl_eTS (r = 0.25, 	 = 750) [2] 11 0.394
eTS (r = 0.25, 	 = 750) [3] 9 0.380

0 500 1000 1500 2000 2500 3000
0

3

6

9

12

Simpl_eTS

eTS

SAFIS

N
u
m

b
e
r

o
f
R

u
le

s

Number of Observation

Fig. 7. Rule update process between different algorithms for Mackey–Glass time series prediction (with normalized inputs) with a single pass.

4. Conclusions

In this paper, a sequential fuzzy inference system called SAFIS is developed based on the functional equivalence
between a RBF (in this case, GAP–RBF network) and a FIS. In SAFIS, the fuzzy rules are added or removed based on
the concept of “influence” of the rule. When there are no additions, only the parameters of the “closest” rule is updated
using an EKF scheme. SAFIS is truly a sequential learning algorithm and produces a compact fuzzy inference system.

The performance of SAFIS has been compared with several existing algorithms on two nonlinear systems identifica-
tion benchmark problems and a chaotic time series prediction problem. Results indicate that SAFIS produces similar
or better accuracies with less number of rules compared to other algorithms.

1275

Acknowledgements

We wish to thank reviewers for all the constructive comments and suggestions. We also wish to thank P. Angelov for
providing the details of eTS and Simpl_eTS and also the source codes of eTS.

References

[1] P.P. Angelov, D.P. Filev, An approach to online identification of Takagi–Sugeno fuzzy models, IEEE Trans. Systems Man Cybernet.—Part B:
Cybernet. 34 (1) (2004) 484–498.

[2] P. Angelov, D. Filev, Simpl_eTS: a simplified method for learning evolving Takagi–Sugeno fuzzy models, in: The 14th IEEE Internat. Conf.
on Fuzzy Systems (2005) 1068–1073.

[3] P. Angelov, J. Victor, A. Dourado, D. Filev, On-line evolution of Takagi–Sugeno fuzzy models, in: Proc. Second IFAC Workshop on Advanced
Fuzzy/Neural Control, Oulu, Finland, 2004, pp. 67–72.

[4] K.B. Cho, B.H. Wang, Radial basis function based adaptive fuzzy systems and their applications to system identification and prediction, Fuzzy
Sets and Systems 83 (1996) 325–339.

[5] D. Deng, N. Kasabov, Evolving self-organizing maps for online learning, data analysis and modeling, in: S.-I. Amari, C.L. Giles, M. Gori, V.
Piuri (Eds.), Proc. IJCNN’ 2000 on Neural Networks Neural Computing: New Challenges Perspectives New Millennium, vol. VI, IEEE Press,
New York, 2000, pp. 3–8.

[6] G.-B. Huang, P. Saratchandran, N. Sundararajan,An efficient sequential learning algorithm for growing and pruning RBF (GAP–RBF) networks,
IEEE Trans. Systems Man Cybernet.—Part B: Cybernet. 34 (6) (2004) 2284–2292.

[7] G.-B. Huang, P. Saratchandran, N. Sundararajan, A generalized growing and pruning RBF (GGAP–RBF) neural network for function
approximation, IEEE Trans. Neural Networks 16 (1) (2005) 57–67.

[8] J.-S.R. Jang, C.-T. Sun, Functional equivalence between radial basis function networks and fuzzy inference systems, IEEE Trans. Neural
Networks 4 (1) (1993) 156–159.

[9] J.-S.R. Jang, C.-T. Sun, E. Mizutani, Neuro-Fuzzy and Soft Computing: a Computational Approach to Learning and Machine Intelligence,
Prentice-Hall, New York, 1997.

[10] C.-F. Juang, C.-T. Lin, An on-line self-constructing neural fuzzy inference network and its applications, IEEE Trans. Fuzzy Systems 10 (2)
(2002) 144–154.

[11] V. Kadirkamanathan, M. Niranjan, A function estimation approach to sequential learning with neural networks, Neural Comput. 5 (6) (1993)
954–975.

[12] N. Kasabov, Q. Song, DENFIS: dynamic evolving neural-fuzzy inference system and its application for time series prediction, IEEE Trans.
Fuzzy Systems 10 (2) (2002) 144–154.

[13] G. Leng, T.M. McGinnity, G. Prasad, An approach for on-line extraction of fuzzy rules using a self-organising fuzzy neural network, Fuzzy
Sets and Systems 150 (2) (2005) 211–243.

[14] C.W. Lee, Y.C. Shin, Construction of fuzzy systems using least-squares method and genetic algorithm, Fuzzy Sets and Systems 137 (2003)
297–323.

[15] S. Mitra, Y. Hayashi, Neuro-fuzy rule generation: survey in soft computing framework, IEEE Trans. Neural Networks 11 (3) (2000) 748–768.
[16] K.S. Narendra, K. Parthasarathy, Identification and control of dynamical systems using neural networks, IEEE Trans. Neural Networks 1 (1)

(1990) 4–27.
[17] J. Platt, A resource allocating network for function interpolation, Neural Comput. 3 (2) (1991) 213–225.
[18] S. Wu, M.J. Er, Dynamic fuzzy neural networks—a novel approach to function approximation, IEEE Trans. Systems Man Cybernet.—Part B:

Cybernet. 30 (2) (2000) 358–364.
[19] L. Wang, J. Yen, Extracting fuzzy rules for system modeling using a hybrid of genetic algorithm and Kalman filter, Fuzzy Sets and Systems

101 (1999) 353–362.
[20] L. Yingwei, N. Sundararajan, P. Saratchandran, A sequential learning scheme for function approximation using minimal radial basis function

(RBF) neural networks, Neural Comput. 9 (1997) 461–478.

