

Abstract

Service-oriented architectures (SOAs) provide an architectural paradigm for software development,

Systems can be organized in terms of services units of software that provide functionality 'as is' to users.

Functionality descriptions and other properties and quality attributes such as security or performance and

usage-oriented information such as invocation protocols and locations are advertised by providers and

can be looked up by potential users.

The Web Services Framework (WSF) is such an SOA [2]. The WSF provides an SOA infrastructure

consisting of a description language (WSDL), an invocation protocol (SOAP), and a repository for

descriptions (UDDI) based on standard Internet and Web technologies such as XML. While the first

generation of the WSF has focused on the use of services' as is', the next needs to address service

composition to enable larger software systems to be assembled based on services as the basic unit [3,4].

Composition of services to processes is here the paradigm of composition. Two forms - orchestration and

choreography- have recently been discussed in the WSF community as techniques for service composition

and collaboration [5]. These two reflect the perspective of business

processes modelled and executed (orchestration(and of systems as interacting processes

(choreography.(So far, the WSF is focused more on invocation than development. UDDl supports potential

users in locating suitable services; how these services are integrated into existing software systems and how

these services can be composed to larger systems is, however, not sufficiently addressed. The state-of

the-art comprises languages for orchestration and choreography, such as WSBPEL4or WS-CDL [5]. The

basis of these languages is workflow and message exchanges, and aspects of interaction processes and

patterns. Principles of component-based software development CBSD [6] are not yet integrated. We will

therefore focus here on using the WSF platform as an infrastructure for service-based software systems

development. The overall aim is to support) service-based) software development on and for the Web.

Formal methods are proven to be successful for the development of safety-critical, dependable software

systems. Formal models allow a higher degree of understanding of principles and mechanisms of the

context, but also particular properties of the application. A formal model of orchestration and choreography

and adescription notation is therefore our central objectives. An important requirement arises if in particular

the Web-based development of service-based systems is to be realized. The Semantic Web

paradigm needs to be embraced in order to support the SOA principle of distributed development

involving different organizations. The semantic Web provides a shared knowledge representation

framework and platform, based on ontology at the core. Ontology can capture properties of services;

they can also support composition description and reasoning. Our objective here is:

•We clarify the notions of orchestration and choreography. To this end, we

will provide a formal model

for service process composition in Section 3.

 •We provide an ontological framework for service process composition that

supports the CBSD objective

of reuse in Section 4. This framework will be

based on the semantically

definition of service process

composition.

 Development of Composite Service Processes

Web-based Service Development

 A service is made up of a coherent set of operations provided at a certain

location. The service

provider makes an abstract service interface description

available that can be used by potential

service users to locate and invoke the

service. Services are often used 'as is' in single request

response

interactions, but more and more the composition of services to processes is

Important. Reuse is a central software engineering principle. Existing services can bereused to form

business or workflow processes. The principle of architectural

composition here is process

Service oriented architecture

http://www.elsevier.com/locatelcor

assembly. The discovery and invocation infrastructure - a registry or marketplace where potential users can

search for services and an invocation protocol- with the services and their clients form a service-oriented

architecture. Languages for description and composition and protocols are central elements of this

architecture. Fig. 1 illustrates this infrastructure for the WSF. Software development for service-oriented

architectures is a two-step process. Discovery is based on abstract computation descriptions (and other

software properties,(formalized based on ontology. Assembly is about composition of services to

processes. Ontologies to represent knowledge about services are essential for the Web as a development

platform. Usage complements a basic service lifecycle. It is about communication and process interactions

between services.

Service Process Composition - Orchestration and Choreography

The WSF provides a platform to invoke services on a 'usage as is'-basis. Real value, however, will be added

if services can be connected [5]. Supporting and implementing business processes within the WSF through

composed services is the requirement. Orchestration and choreography are two forms of service

composition and collaboration that are currently discussed.

•Orchestration refers to a composed business process that may use both internal and external Web

services to fulfill its task. The business process is controlled by one of the agents in the system. The

process is described at the message level, i.e. in terms of message exchanges and execution order.

•Choreography addresses the interactions that implement the collaboration between services. Multiple

agents are considered where each agent describes its own part in the interaction. Orchestration and

choreography address different perspectives. Orchestration is focused on the internal behavior of a

business process. Choreography is focused on the external perspective, looking at process interaction.

These perspectives are the essential aspects of an SOA. We will capture these in a process model

(orchestration) and an interaction model (choreography.(

A Bank Account Example

An online banking example shall illustrate our service process

framework. Login; !(Balance+Lodgement+ Transfer); Logout is a process expression describing an

interaction process of an online banking user starting with a login, then repeatedly executing balance

enquiries, lodgements or money transfer, before login out. In Fig. 2, four services are described in a

pseudo-codenotation. Each of these services implements a process internally (orchestration.(The

interactions resulting from the service invocations (import, overlined,e.g. Balance) and service provision

(export, normal, e.g. Login) are the result of service choreography. For instance, Account Process is a client

of Bank Account and Login Server; Bank Account is a client of

Account Registry.

"Services and Processes - a Formal Operational Model

Description and composition are central design activities. In this section, wedevelop a formal model and an

abstract language that form an operational framework for both activities. We formalize orchestration and

choreography and develop a semantical framework that defines and supports composition activities. This

operational semantically framework serves to capture requirements and form an underlying layer for the

ontological framework.

Orchestration and Choreography Description Orchestration.

We can derive the following core requirements for an orchestration notation from languages such as

WS-BPEL.

-basic elements: message-based actions in two form - invocations for external services and

receive/reply actions if the service is available to others,

•process language: sequence, choice, iteration, and concurrency are the service/process

combinators,

•abstraction and export interface: a process can be provided as aWeb service,

•state and data: variables and parameters to actions are needed. The focus of orchestration is illustrated in

Fig. 3. The business process itself and the Web services that implement the process are separated. This

keeps the process logic apart from its implementation. The process is executed byan orchestration engine

which invokes the respective services.

We capture the foundations of orchestration in form of a process model focusing on service composition. A

process description is about control flow and the determination of the execution order. We will start with

abstractactions to concentrate on control flow first - data aspects and also interactions will be added later. A

process description can serve different purposes:

-to define a business process in terms of actions and control flow,

-to describe the external, observable interaction pattern that a service can engage in a composed

system (if the process is made available as a service.(Our process model is based on the principles and

notation of then-calculus. Service process expressions, or processes are inductively formed based on a

basic process names, named process expressions, and the combinatory sequence

, ;parallel composition I , non-deterministic choice+, and iteration

. !A named process expression P(sl, ... , sk) is defined by a service process expression on based services sl,

... , sk and the combinators. The process definition is recursive. Based on basic processes (which are Web

services,(composite services can be defined, i.e. expressions such as P = sl; s2;Q can be used. We also use

the notation P-sl--7;s2 Q to emphasise the transitional character of processes. Example 3.1 Login;

!(Balance+Lodgement+Transfer); Logout is a business process for an online bank account. This

orchestration example ignores the import/export classification of process elements necessary for

choreography. We now adds data by refining the notion of actions. For service s and data item x, s(x) is the

receive action,

is the reply action, andlet y =

s x

in Pis the invoke action. Receive and reply actions areneeded to faciliate service provision. Invoke is

needed to use other services. The invocation provides a scope for the returned result y of the

interaction.

Choreography.

Similar to our orchestration discussion, we note the main requirements for achoreography

description notation [5:[

-basic activities: request/response action for local activities, invoke to call external services,

•structured activities: loop, sequence, choice, and concurrency,

•infrastructure: channels/connections between ports that represent services.

The focus of choreography is observable interaction behavior, not execution, see Fig. 3. The orchestration

model is a process model with its focus on controlflow and execution order. The choreography model is an

interaction model about process interaction, i.e. synchronization and data exchange. Essential in modeling

process interaction is to add data flow between processes.Web services are connected through a network.

The network end points that represent services are called ports - service names will act as port names.

Services (and their ports) can be receivers and senders of data, i.e. read from or write to communication

channels set up between the ports. Assume a service port s and a data item x. Then, s(x) is the receive

action and

is the send action. Note, that in contrast to orchestration, we have abstracted here from the difference

between provider actions (receive/reply) and client actions)invoke). The expression

Balance ace

; Balance(bal) asks service Balance for the current balance of account ace and then receives the balance

bal.An interaction is the activation of a remote service. Two forms shall be provided. Assume a process

expression P.

•request-response: for each service s in P a write-read sequence

s x

;s(y(where y is the returned result from an external service.

•execute-reply: for each services in Pa read-write sequence s(x);

s ~x

where f is some internal service functionality. These interactions are the basic building blocks of the process

life cycle. Lnput services names in a process expression need to be bound to a concrete service that can

execute the service functionality. Finding suitable services that match each individual service requirements

and managing the connections is part of the interaction model and its matching and connection support.So

far, the concurrent composition of processes A I B does not allow interactions. A transition rule (called

reaction rule in then-calculus) can captureinteraction and describe the data flow in these interactions - see

details in below. A shared channel can be created

that forms a connection between two agents. Usually, the port names act as channel names (e.g. the

n-calculusrequires matching port names to establish a connection; we will loosen this constraint later on).

Choreography is often about fixed connections. Process calculi, however, also cater for connections that are

created dynamically. Using then-calculus' scope extrusion, dynamic architectures can be modeled.

Composition Support

Descriptions are needed to publish services in repositories or to capture requirements for these services.

We will provide a simple development and deployment model for services in form of a life cycle model,

before addressingtechniques needed for individual activities in that lifecycle.

Life Cycle and Activities.

Description and matching are design activities. Essential is, however, the support of the full process life

cycle. Binding individual service names to existing services, i.e. composing a process instance and

executing this instance are as important as description and matching. The foundations of these aspects

aregiven in form of a choreography or interaction model that describes bindings, connections, and

interactions between services. Each service is a family of ports sC, sl, sR that address the needs of

thedifferent life cycle stages. Port sC is a contract port, representing an interface that captures abstract

properties. sl and sR are connector ports for interactions! Handles service invocation and input and sR

handles the service reply. We express the service life cycle in an annotated process notation

for the requestor with annotations for requesting, invoking, and result. Dual to the requestor view there is

a provider view

with annotations for providing, executing and replying. In the requestor view, Req

sC

is an annotated output action of service

s. A process can request Req a service using contract port sC. Connector port references sl and sR are

subsequently sent for further interactions. If matching between a request or port type and a provider port type

issuccessful, then the requestor and the provider process can be composed, i.e. requestor can interact with

the provided service repeatedly. The request or would invoke Inv the service at port sl and receive a result

Res at port sR

Matching.

Matching is central in composition. An existing service that is reused and integrated, for instance into a

business process, must match the requirements in order to allow the business process to fulfill its task.

•Import process patterns describe how a process expects to use other services.

•Export process patterns describe how provided services have to be used.

These are elements of an orchestrated business process. Orchestration elements are more relevant to

matching than choreography aspects such as interaction, which is more deployment-oriented.

The specification of processes describes the ordering of observable activities. We use a simulation notion

to define process matching. The requested process is the import process pattern that the client expects the

provider to support. A provider process P matches (or simulates) a requested process R if there exists a

binary relation S over the set of processes such that if whenever RSP and R -rn-s R then there exists Psuch

that P -n-7Pand RSP.

This definition originates from the simulation definition of then-calculus [7. [The provider needs to be able

to simulate a request, i.e. needs to meet therequest pattern of the client. Dynamic binding of concrete

services to the process names is possible. This definition is about potential interaction.

Example 3.2 A provided service process!(Balance+Lodgement+ Transfer(matches the expected

support of process !(Bal+Ldg). If the pairs Balance/Baland Lodgement/Ldg match (e.g. equal

signatures), then the provider matches)simulates) the requested process.

Connection and Interaction.

Composition consists of two activities: matching and connection. Successful matching can result in a

connection between service ports. From the perspective of a business process, concrete services are

connected to the abstract business process elements.

So far, we have been looking at matching of abstract process descriptions. We now focus on the

computational side of compositions. The connection of matching services shall now be formalized using an

operational semantics. In the composition process we can distinguish a contract phase where both process

instances try to form a contract based on abstract descriptions. The connection phase establishes a

connector channel for interaction between theservices. We will capture contract and connector

establishment in form of transition rules. This formalises the connection of provider and client in the WSF - a

virtual link between URls that are used by the SOAP protocol.

For a parallel composition

.CI nC(nl).P of a client business process

element and a provider service, both processes commit

themselves to a communication

along a (virtual) channel between ports me and nC. A contract

rule

formalizes

the process of matching and commitment 2 :

Services and Processes -

an Ontological Framework

Supporting service development is ideally supported through ontology technology

for shared

representation of knowledge -

here service descriptions. We

illustrate how description and composition

of services processes can be represented

in a description logic that underlies a Web ontology

language.

Ontologies for Web Services and Processes

The formal model (see Section 3) goes beyond what we need for the ontological framework to support the

development of service-based software systems. Ontologies are needed to support composition through

matching of patterns and processes, i.e. port orientation and other interaction and choreography aspects are

not relevant since they address the deployment infrastructure. The ontological framework therefore

abstracts the underlying formal operational model, which defines the development and deployment

infrastructure. We will develop the ontological framework in terms of a description logic [8.[Description logic

as the underlying logic of the Semantic Web is particularly interesting for the software engineering context

due to a correspondence between description logic and dynamic logic (a modal logic of programs) [9.[This

correspondence is based on a similarity between quantified constructors)expressing quantified relations

between concepts) and modal constructors(expressing safety and liveness properties of programs).

A Basic Process Ontology

Ontologies are formal frameworks that provide knowledge description and reasoning techniques. The

starting point in defining ontology is to decide what the basic ontology elements (concepts and roles)

represent. Here, the ontology shall formalize process-based, i.e. state-transition based software

systems.

•Concepts are classes of objects with the same properties. Individuals are named objects. Concepts

represent software system properties in this context. Systems are dynamic. Descriptions of properties are

inherently based on underlying notions of state and state change.

•Roles in general are relations between concepts. Here, they shall representtwo different kinds of

relations. Transitional roles represent service operationsin form of accessibility relations on states, i.e.

they represent servicesresulting in state changes. Descriptional roles represent properties of astate such

as invariant descriptions like service name and description or preandpostconditions (if they are part of the

description format.(

•Constructors allow more complex concepts to be constructed in form of concept descriptions.

Classical constructors include conjunction and negation ~. Hybrid constructors are based on a concept and a

role. The constructor \fR.C - called value restriction - is interpreted based on either an accessibility relation R

to a new state C for transitional roles, or on a property R satisfying a constraint C for description roles. The

dual 3R.Cis called existential quantification.

In Fig. 4, the service process ontology is shown. A state is an abstractconcept that is described in terms of

elements of auxiliary domains through description roles such as invariant and mutable state properties

(formal conditions, textual descriptions, etc.). The two essential state concepts are pre and post, which

denote abstract pre- and post-states for service process transitions (not to be confused with pre- and post

conditions). For example,

\foutSign.int specifies a post-state by associating an output signature int. Throughout this paper, we use a

description logic notation, e.g. for a given concept pre, we could constrain input signatures, \finSign.(int,int).

This notation is equivalent to a triple expression (pre,insign,(int,int)), which would be used in RDF (on which

OWL is based).

Orchestration and Choreography

We introduced the representation of basic services in a description logic-based ontology. An ontology that

captures service processes and their composition, however, requires an extension of classical description

logics [8]. So far, roles -that represent service operations -

are atomic. We define the combinators

 'I' , '!' , ';'and'+' as role constructors for sequential composition, transitive

closure (iteration), intersection

(parallel composition without interaction,(and union (non-deterministic choice) of service processes,

respectively. We

also use Ill for sequential composition to emphasize

the functional character

of roles. Role

constructors allow us to integrate process description and

composition into

an ontology framework. The description logic expression

Balance+Lodgement+Transfer).post describes a process. Axioms

and inference rules allow us to capture

activity-related properties

in the logic, e.g. in order to reason about matching. For example, \fR.\fS.C¢::}

\fR; S.C is an axiom that describes the conversion between logical operators

and role expression

combinators.

We need to integrate data and process parameters into the logic. We

introduce data in form of names. Names stand for individual data elements.

•We denote a name n by a role nN, interpreted by an identity relation

)}nl, nl)} for the interpretation nl of n.

•An operation R is a parameterised role RI ~

D x S x S for domain Dof a name and states S.

•A parameterized

role R applied to a name nN, represented here as an identity

relation, i.e. R Ill nN, forms

a transitional role, i.e. R Ill nN ~

S x S 4.

I°. I° Com position Support

Matching.

Subsumption is the central inference technique in description

logic. The subsumptionCl

C2 of concepts is the subset-relationship of the corresponding

object classes. Equally, we define

subsumption for roles Rl R2. We defineservice process matching in the expected way. A process P(nl, .. ,

nk) matchesa process R(ml, .. ,ml), if P(nl, .. , nk) simulates R(ml, .. ,ml). Subsumption on

roles, however, is

input/output-oriented, whereas the simulation needs to considerinternal states of the composite role

execution. For each request in a process, there needs to be a corresponding provided service. Although

notthe same, matching is a sufficient condition for subsumption. If the process

expression P(nl, ... , nk)

simulates the process R(ml, ... , ml), then R

P.Matching can be ontologically supported by constructive axioms [10.[

Connection and Interaction.

We have formulated the operational semantics of interaction in form of process

calculus-style contract and

connector rules. In terms of the ontology, services

were so far described as transitional

roles and we considered system states

that describe service (and process) properties such as pre

and

post-states to

define transitional process behavior.

We formalize

composition and interaction in the ontology

framework through

inference rules. In order to address interaction, we need to look at a special

kind of a

parallel composition transition. This transition is based on the

synchronization

of concurrent services

through data exchange. We can characterize

properties of interactions between two services, here

a

reformulation

of the contract rule without annotations and matching constraints,

This rule for parallel composition complements other constructor-specific axioms and rules that we can

derive from dynamic logic and process calculi such as the axiom Vp: q.C lll\fp.\fq.C for the sequence.

These axioms and inference rules form an application-specific extension of description logic that allow

usto infer more properties about service processes and their interactions.

Related Work

Composition of services is an active area of research [3,4,11]. In particular the need to address

semantics in the context of composition has been recognized. In [3], an ontological framework for service

composition is presented based onOWL-S (a rich services ontology, formerly known as DAML-S) as the

underlying service ontology [13]. Their application area is the Grid services context and

knowledge-based advice systems. OWL-Sis different from our ontological

framework in its process model. OWL-S represents services as concepts in the ontology, not as transitions.

Therefore, the bridge to dynamic logics cannot be exploited in the way we proposed. Another OWL-S based

approach is taken in [4]. Here, the logical side is strengthened. OWL-S descriptions are converted in linear

logic and architecture based on a logic-based planner and a semantic reasoner are proposed. The ultimate

aim, as in our description-logic based approach, is the exploitation of logic reasoning for service

composition. Our approach differs from the discussed OWL-S-based approaches and other service

ontologies such as WSMO [12] in that the ontological model captures services and processes in a more

intrinsic way .OWL-Sand WSMO address a wider range of properties, which suggests an integration of these

approaches with our composition framework. We have aimed at reflecting the current discussion on

orchestration and choreography in our technical and ontological models here.

Semantic Web services are a subject that our approach needs to be related to. OWL-S [13] and WSMO [12]

are examples of ontological frameworks that support matching of semantically described services. Both

focus on the semantically description of services including abstract descriptions, quality of-service aspects,

and functional abstractions such as pre- and post conditions. We can use pre- and post conditions as

abstractions for ports, enabling the design-by-contract approach [14]. Dynamic logic is a suitable logical

framework that subsumes pre- and post condition specification [15]. The connection between description

logic and dynamic logic allows us to integrate thesecontracts easily into our framework. Similar to signatures,

we can associate

(descriptive) pre- and post condition roles to pre- and post states, respectively. Two service operations

described by pre- and post conditions and represented by contract ports nC and me match, if the

requestor's precondition is weakened and the post condition strengthened [15,16].

Again, we would need to integrate reasoning about services matching with subsumption. Subsumptionis

interpreted as a subset relationship on sets of states that satisfy pre- or post-state descriptions. We

present a matching inference rule for transitional roles. We define the matching rule

Organizing

software systems as service-oriented architectures is a new architectural paradigm. The Web

Services Framework is currently the most important

platform supporting this paradigm. In order to make the

paradigm

more successful as a software development approach, the focus on deployment, invocation, and

reply has to shift towards more re-use and composition. Service

reuse is one of our objectives; process

assembly of reusable services

is the principle of architectural composition in this context. What is needed is

 a component-style composition framework for services -

in particular an ontological

framework to make it

work as a development approach for distributed

and shared platforms such as the Web. We have developed

a formal framework

based on ontologies (and underlying logics) and process-based service

composition,

applicable to the Semantic Web and Web Services platforms. We

have looked at core aspects of such a

framework here -

a complete and

 formal treatment was beyond the scope of this paper. One of the lessons we

have learned is that a

comprehensive formal framework for service-oriented

architectures is needed to address predictable

assembly, reuse, maintenance, and

change and evolution management. We consider our contribution part of

a methodology for service-based software development and deployment.

Conclusions

