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a b s t r a c t

In this paper, a value-iteration based heuristic dynamic programming (HDP) algorithm is developed to
solve the optimal control for the continuous time affine nonlinear systems. First, a rigorous convergence
proof of the HDP algorithm is given. Second, stability issues of the HDP algorithm for nonlinear systems
are investigated. It is commonly believed that the main drawback of the HDP algorithm is that only the
limit function of the iterative control sequence is proved to be stabilized, thus infinite iterations are
executed. To confront this problem, we present a novel stability result for the HDP algorithm, which
indicates that the resulting iterative control laws after finite iterations can guarantee the closed-loop
stability. A similar stability result is also obtained for the discrete time nonlinear systems. Therefore, the
practicality of the HDP algorithm is greatly improved. Single neural network (NN) structure is employed
to implement the algorithm. It should be pointed that the algorithm can be implemented without
knowing the internal dynamics of the systems. Finally, two numerical examples are given to
demonstrate the effectiveness of the developed methods.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

One of the most basic design principles in the feedback control
design is to guarantee the closed-loop stability of the nonlinear
systems. Optimal control aims to design a feedback control law,
which not only guarantees the system closed-loop stability, but also
follows the optimal manner according to an overall performance
index. In the past decades, a mountain of work has been done for
the optimal control of nonlinear systems. Dynamic programming
[1], which is proved to be a powerful method, has been extensively
applied to generate the optimal control for nonlinear systems.
However, one notable drawback of this method is the computing
cost with the increasing dimension of the nonlinear systems, which
is referred to as the “curse of dimensionality”. Approximate
dynamic programming (ADP) [2] methods have been proposed to
circumvent this difficulty. Different from the DP methods, ADP
solves the optimal control problems forward-in-time [2,3].

The optimal control for linear systems with respect to a quadric
performance index can be achieved by solving the algebra Riccati
equation (ARE). However, for nonlinear systems, the optimal feed-
back control depends on obtaining the solution to the Hamilton–

Jacobi–Bellman (HJB) equation, which is challenging to solve directly
due to its inherently nonlinear nature. To confront this difficulty,
iterative methods have been proposed to obtain the solution of the
HJB equation indirectly which can be roughly sorted into two classes
[4]: policy-iteration and value-iteration. For the policy-iteration
algorithm [5–11], all the iterative control laws stabilize the system,
however, an initial stabilized control law is required, which is often
difficult to obtain in practical applications.

For the value-iteration algorithm, an initial stabilized control
law is not required. Zhang et al. [12] studied the near-optimal
control for a class of discrete-time affine nonlinear systems with
control constraints by the iterative DHP method. Al-Tamimi et al.
[13] derived a value-iteration based HDP algorithm to solve the
optimal control problems and provided a full rigorous conver-
gence proof. In [14], the HDP algorithm has been used to solve the
non-affine nonlinear systems with respect to a discounted perfor-
mance index. An iterative value-iteration based ADP method has
been proposed in [15] to solve a class of nonlinear zero-sum
differential games. An iterative DHP algorithm has been proposed
in [16] for optimally controlling a large class of nonlinear discrete-
time systems affected by an unknown time variant delay and
system uncertainties. In [17], Huang et al. proposed an optimal
tracking control scheme based on HDP algorithm by transforming
the original tracking problem into a regulation problem with
respect to the state tracking error. A SN-DHP based technique
has been developed in [18] to find the near optimal controller for
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unknown affine nonlinear discrete-time systems. An on-line
learning and control approach based on ADP for wind farm control
and integration with the grid has been investigated in [19]. In [20],
a greedy HDP algorithm has been developed to solve the zero-sum
game problems for affine discrete-time systems, which can be
used to solve the Hamilton–Jacobi–Isaacs equation associated with
H1 optimal regulation control problems. The data-driven ADP
methods have also received considerable attention recently. A
model-free optimal control scheme for a class of linear discrete-
time systems with multiple delays in state, control and output
vectors has been developed in [21], where the optimal control can
be obtained using only measured input/output data from systems
by ADP technology. For more details, see [22–24] and references
therein. However, most of the research on value-iteration focuses
on the discrete-time nonlinear systems, the value-iteration based
HDP algorithm for the continuous-time nonlinear systems remains
unstudied. This motivates our work.

The main drawback of the value-iteration algorithm is that only
the limit function of the iterative control sequence has been proved
to be stabilized while the iterative control laws may be not [25]. This
greatly limits the applications of the value-iteration algorithm. Li
et al. [26] proposed general value-iteration (GVI) algorithm and Wei
et al. [28] proposed a stable θ-ADP scheme, but the initial values of
both are difficult to be obtained. Convergence of the ADP algorithm
does not mean that the iterative control laws provide the closed-loop
stability of the considered nonlinear systems. The closed-loop
stability of the nonlinear systems must be guaranteed when the
optimality is achieved. However, it is worthy noting that in the
existing references, say [12–14,16–18], the optimal iterative control
laws obtained by the value-iteration algorithm are indeed stabilized,
rather than just the limit function of the iterative control sequence. A
theoretical explanation for this phenomenon has not yet been given,
to our best knowledge. In this paper, novel stability results for
iterative control laws are proposed. It is proved that for the infinite
horizon problem, the resulting iterative control laws after finite
iterations can guarantee the closed-loop stability of the nonlinear
systems, which greatly increases the practicability of the value-
iteration based HDP algorithm.

The rest of the paper is organized as follows. In Section 2, the
value-iteration based HDP algorithm for the continuous-time affine
nonlinear systems is developed and a rigorous convergence proof is
given. Novel stability results of the HDP algorithm for the continuous-
time nonlinear systems are proposed. In Section 3, stability issues of
the HDP algorithm for discrete-time nonlinear systems are investi-
gated. NN implementations of the HDP algorithm are given in Section
4. Two simulation examples are employed in Section 5 to demonstrate
the effectiveness of the developed methods.

2. HDP algorithm for continuous-time nonlinear systems

Consider the affine continuous-time nonlinear system of form

_xðtÞ ¼ f ðxðtÞÞþgðxðtÞÞuðxðtÞÞ; xð0Þ ¼ x0; ð1Þ
where xðtÞARn is the state vector and uðtÞARm is the input vector,
f ðxðtÞÞARn and gðxðtÞÞARn�m. It is assumed that f ðxðtÞÞþgðxðtÞÞ
uðxðtÞÞ is Lipschitz continuous on a set ΩDRn which contains the
origin, and that the dynamical system is stabilizable on Ω, which
means that there exists a continuous control function uðxðtÞÞARm

such that the system is asymptotically stable on Ω.
We consider the following quadric performance index:

JðxðtÞÞ ¼
Z 1

t
xðτÞTQxðτÞþuðxðτÞÞTRuðxðτÞÞ dτ; ð2Þ

where the state weighting matrix QARn�n is nonnegative definite
and the inputs weighting matrix RARm�m is positive definite. The

objective is to find the control law uðxðtÞÞ which minimizes the
infinite-horizon cost function (2). Note that the control law uðxðtÞÞ
needs to be stabilized and guarantees that (2) is finite, i.e., the
control law must be admissible [5].

2.1. Value-iteration based HDP algorithm for continuous-time
nonlinear systems

In this subsection, we propose the value-iteration based HDP
algorithm for continuous-time nonlinear systems and give the
convergence proof. Note that the key difference between the HDP
algorithm and the general policy-iteration algorithm with k¼1
(which is in fact a variant of the value-iteration algorithm) in [10]
is that the initial control law is not necessary stabilized.

Defining the Hamiltonian of the problem as

HðxðtÞ;uðtÞ; ∂V=∂xÞ ¼ xðtÞTQxðtÞþuðxðtÞÞTRuðxðtÞÞ

þ ∂V
∂x

� �T

ðf ðxðtÞÞþgðxðtÞÞuðxðtÞÞÞ; ð3Þ

then we can start with an initial value V0ðxðtÞÞZ0, and then solves
for u0 as

u0ðxðtÞÞ ¼ arg min
vðxðtÞÞ

HðxðtÞ; vðxðtÞÞ; ∂V0=∂xÞ; ð4Þ

then we update the cost function as

V1ðxðtÞÞ ¼
Z tþh

t
xðτÞTQxðτÞþu0ðxðτÞÞTRu0ðxðτÞÞ dτþV0ðxðtþhÞÞ; ð5Þ

where h40 is the sampling period.
The value-iteration based HDP algorithm iterates between the

following two steps:

� Value update step: update the value using

Viþ1ðxðtÞÞ ¼
Z tþh

t
xðτÞTQxðτÞþuiðxðτÞÞTRuiðxðτÞÞ dτþViðxðtþhÞÞ:

ð6Þ

� Policy improvement step: determine the improved policy using

uiþ1ðxðtÞÞ ¼ arg min
vðxðtÞÞ

HðxðtÞ; vðxðtÞÞ; ∂Viþ1ðxðtÞÞ=∂ðxðtÞÞÞ: ð7Þ

In the above recurrent iteration, i is the iteration index. The cost
function and control law are updated until they converge to the
optimal values. The following convergence theorem is inspired by
the innovative work of [26,27].

Theorem 1. Suppose the condition

0r JnðxðtþhÞÞrθ

Z tþh

t
xðτÞTQxðτÞþuðxðτÞÞTRuðxðτÞÞ dτ ð8Þ

holds uniformly for some 0oθo1 and that 0rδJnrV0rωJn,
0rδr1, 1rωr1. The control law sequence {ui} and value
function sequence fVig are iteratively updated by (6) and (7). Then
the value function Vi approaches the optimal value function JnðxðtÞÞ
according to the inequalities

1þ δ�1

ð1þθ�1Þi

" #
JnðxðtÞÞrViðxðtÞÞr 1þ ω�1

ð1þθ�1Þi

" #
JnðxðtÞÞ: ð9Þ

Define V1ðxðtÞÞ ¼ limi-1ViðxðtÞÞ, then V1ðxðtÞÞ ¼ JnðxðtÞÞ.

Proof. The proof is given in the Appendix.
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Remark 1. Let the iteration index i go to infinite, then we see

V1ðxðtÞÞ ¼ min
uðxðtÞÞ

Z tþh

t
xðτÞTQxðτÞþuðxðτÞÞTRuðxðτÞÞ dτþV1ðxðtþhÞÞ

( )

¼
Z tþh

t
xðτÞTQxðτÞþu1ðxðτÞÞTRu1ðxðτÞÞ dτþV1ðxðtþhÞÞ;

ð10Þ
where

u1ðxðtÞÞ ¼ arg min
uðxðtÞÞ

Z tþh

t
xðτÞTQxðτÞ

(

þuðxðτÞÞTRuðxðτÞÞ dτþV1ðxðtþhÞÞ
)
: ð11Þ

Let h-0þ , then we obtain

_V1ðxðtÞÞ ¼ _V
þ
1ðxðtÞÞ ¼ lim

h-0þ

1
h
½V1ðxðtþhÞÞ�V1ðxðtÞÞ�

¼ �½xðtÞTQxðtÞþu1ðxðtÞÞTRu1ðxðtÞÞ�o0; ð12Þ

where _V
þ
1ðxðtÞÞ is the right derivative of _V1ðxðtÞÞ. Then we readily

see that V1ðxðtÞÞ is a Lyapunov function. By the Lyapunov stability
criteria, the system (1) using the iterative control law (11) is stable.
This result can be viewed as the continuous time case of that
in [13].

Remark 2. Generally speaking, infinite iterations are required to
obtain the optimal value V1ðxðtÞÞ, then obtain the optimal control
by Eq. (4). In practical applications, since we cannot implement the
iteration until i-1, we run the algorithm with a prespecified
accuracy ε to test the convergence of the cost function sequence. If
jViþ1ðxðtÞÞ�ViðxðtÞÞjoε, then we consider that the cost function
sequence has converged sufficiently and ViðxðtÞÞ is the optimal
value, uiðxðtÞÞ is the optimal control.

2.2. Stability analysis of the value-iteration based HDP algorithm

The main advantage of the value-iteration algorithm over the
policy-iteration algorithm is that the initial control law needs not
to be stabilized. However, the notable drawback of existing results
of the value-iteration algorithm is that only the limit function of
the iterative control sequences is proved to be stabilized. This can
be achieved only when infinite iterations are executed, which
greatly restricts its practical application. Although we can obtain
the optimal value ViðxðtÞÞ and the optimal control uiðxðtÞÞ, where
the iteration index i is determined according to Remark 2, but
whether uiðxðtÞÞ can stabilizes the nonlinear system (1) still
remains unsolved. After all, uiðxðtÞÞ does not necessarily equate
to u1ðxðtÞÞ. However, in the existing work [12–14,16–18], its worth
noting that the resulting iterative control laws after finite itera-
tions do stabilize the nonlinear systems when acceptable approx-
imation precision to the optimality is achieved. The following
theorem verifies this fact for the first time.

Theorem 2. For value-iteration based HDP algorithm (6) and (7),
there exists a finite iterative index in such that for any iZ in, the
iterative value functions fViðxðtÞÞg1i are a series of Lyapunov functions
and the nonlinear system (1) using the iterative control law uiðxðtÞÞ is
stable.

Proof. It is easy to prove that ViðxðtÞÞ, for any i, is a positive define
differentiable function. From Theorem 1, limi-1ViðxðtÞÞ ¼ JnðxðtÞÞ,
which implies

lim
i-1

½Viþ1ðxðtÞÞ�ViðxðtÞÞ� ¼ 0: ð13Þ

Since that

lim
i-1

Z tþh

t
xðτÞTQxðτÞþuiðxðτÞÞTRuiðxðτÞÞ dτ

¼
Z tþh

t
xðτÞTQxðτÞþunðxðτÞÞTRunðxðτÞÞ dτ

holds, and for 8xðtÞa0 and any given sampling period h, the
utility function of ith iterative control law has a lower boundZ tþh

t
xðτÞTQxðτÞþuiðxðτÞÞTRuiðxðτÞÞ dτ4

Z tþh

t
xðτÞTQxðτÞ dτ: ð14Þ

Then we get the conclusion that there exists a finite iterative index
in, for any iZ in, it holds that

jViþ1ðxðtÞÞ�ViðxðtÞÞjo
Z tþh

t
xðτÞTQxðτÞþuiðxðτÞÞTRuiðxðτÞÞ dτ; ð15Þ

according to (6), we get

ViðxðtþhÞÞ�ViðxðtÞÞ ¼ Viþ1ðxðtÞÞ�ViðxðtÞÞ

�
Z tþh

t
xðτÞTQxðτÞþuiðxðτÞÞTRuiðxðτÞÞ dτ

r jViþ1ðxðtÞÞ�ViðxðtÞÞj�
Z tþh

t
xðτÞTQxðτÞþuiðxðτÞÞTRuiðxðτÞÞ dτ

o0: ð16Þ
Similarly, let h-0þ , we obtain

_V iðxðtÞÞ ¼ _V
þ
i ðxðtÞÞ ¼ lim

h-0þ

1
h
½ViðxðtþhÞÞ�ViðxðtÞÞ�o0; ð17Þ

where _V
þ
i ðxðtÞÞ denotes the right derivative of ViðxðtÞÞ. Then we

readily see that for any iZ in, fViðxðtÞÞg1i are proved to be a series of
Lyapunov functions. By the Lyapunov stability criteria, the system
using the iterative control laws fuiðxðtÞÞg1i4in is stable. □

Remark 3. Theorem 2 indicates that the value-iteration based
HDP algorithm (6) and (7) produce a series of stabilized iterative
control laws as the iterative value functions converge to the
optimal value, rather than only the limit function of the iterative
control sequence.

3. HDP algorithm for discrete-time nonlinear systems

Consider the affine discrete-time nonlinear system of form

xkþ1 ¼ f ðxkÞþgðxkÞuðxkÞ; k¼ 1;2;… ð18Þ
where xkARn is the state vector and uðxkÞARm is the input vector,
let x0 be the initial state and f þgu be the system function. Without
loss of generality, that x¼0 is an equilibrium state of the system
under the control uk¼0.

It is desired for us to find an admissible control law uðxkÞ which
minimizes the infinite-horizon cost function as follows:

Jðxk;uÞ ¼ ∑
1

j ¼ k
xTj QxjþuðxjÞTRuðxjÞ; ð19Þ

where the state weighting matrix QARn�n is nonnegative definite,
and the inputs weighting matrix RARm�m is positive definite.

The value-iteration based HDP algorithm for discrete-time
nonlinear systems is given as follows.

For any initial value V0ðxkÞZ0, solve for u0 as follows:

u0ðxkÞ ¼ arg min
uðxkÞ

fxTkQxkþuðxkÞTRuðxkÞ

þV0ðf ðxkÞþgðxkÞuðxkÞÞg:
Then update the cost function as

V1ðxkÞ ¼ xTkQxkþu0ðxkÞTRu0ðxkÞþV0ðf ðxkÞþgðxkÞu0ðxkÞÞ:
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So the value-iteration based HDP algorithm iterates between the
following two steps:

� Value update step: update the value using

Viþ1ðxkÞ ¼ xTkQxkþuiðxkÞTRuiðxkÞþViðf ðxkÞþgðxkÞuiðxkÞÞ: ð20Þ

� Policy improvement step: determine the improved policy using

uiþ1ðxkÞ ¼ arg min
uðxkÞ

fxTkQxkþuðxkÞTRuðxkÞ
þViþ1ðf ðxkÞþgðxkÞuðxkÞÞg: ð21Þ

In the above recurrent iteration, i is the iteration index, while k
is the time index. The cost function and control law are updated
until they converge to the optimal optimum values. The conver-
gence proof of the algorithm has been given in [26].

Lemma 1. Suppose the condition

0r Jnðf ðxkÞþgðxkÞuðxkÞÞrθUðxk;uðxkÞÞ ð22Þ
holds uniformly for some 0oθo1 and that 0rδJnrV0rωJn,
0rδr1, 1rωr1. The control law sequence {ui} and value
function sequence {Vi} are iteratively updated by (20) and (21). Then
the value function Vi approaches J

n according to the inequalities

1þ δ�1

ð1þθ�1Þi

" #
JnðxkÞrViðxkÞr 1þ ω�1

ð1þθ�1Þi

" #
JnðxkÞ: ð23Þ

Define V1ðxkÞ ¼ limi-1ViðxkÞ, then V1ðxkÞ ¼ JnðxkÞ.
According to the lemma given above, we can also prove that the

value-iteration based HDP algorithm (21) and (20) produce a series
of stabilized iterative control laws as the iterative value functions
converge to the optimal value, which is shown in the following
theorem.

Theorem 3. For the value-iteration algorithm (20) and (21), there
exists a finite in such that for iZ in, the iterative value functions
fViðxkÞg1i are a series of Lyapunov functions and the system using the
iterative control laws fuiðxkÞg1i is stable for any given initial value
function.

Proof. It is easy to prove that ViðxkÞ, 8 i is a positive define
function. From Lemma 1, limi-1ViðxkÞ ¼ JnðxkÞ, which implies

lim
i-1

½Viþ1ðxkÞ�ViðxkÞ� ¼ 0: ð24Þ

Since limi-1Uðxk;uiðxkÞÞ ¼Uðxk;unðxkÞÞ, then for 8xka0, it holds
that

Uðxk;uðxkÞÞ4xTkQxk: ð25Þ
Using (24), we see that there exists a finite iterative index in, for
any iZ in, it holds that

jViþ1ðxkÞ�ViðxkÞjoxTkQxkoUðxk;uðxkÞÞ: ð26Þ
According to (20), we have

Viðxkþ1Þ�ViðxkÞ ¼ Viþ1ðxkÞ�ViðxkÞ�Uðxk;uiðxkÞÞ
r jViþ1ðxkÞ�ViðxkÞj�Uðxk;uiðxkÞÞo0: ð27Þ

Therefore, for iZ in, ViðxkÞ is proved to be a Lyapunov function.
By the Lyapunov stability criteria, the system using the iterative
control laws fuiðxðtÞÞg1i4in is stable. □

Remark 4. Apparently, Theorem 3 can be viewed as the general-
ization of the conclusion of that in [13], where only the limit
function of the iterative control sequence is proved to be stabilized.

Remark 5. Consider the linear discrete-time systems, the value
function is of form ViðxkÞ ¼ xTkPixk [13], where Pi is symmetric

positive definite, then we have

Viðxkþ1Þ�ViðxkÞ ¼ xTkPiþ1xk�xTkPixk�xTkQxk�uT
i ðxkÞRuiðxkÞ

¼ xTk ðPiþ1�Pi�Q Þxk�uT
i ðxkÞRuiðxkÞ: ð28Þ

Obviously, for xka0 and any given symmetric positive definite
matrix Q , if Piþ1�PioQ , then ViðxkÞ ¼ xTkPixk is a Lyapunov
function. This condition is very easy to satisfy since Pi-Pn as
i-þ1, i.e., ‖Piþ1�Pi‖-0.

4. Implementation of HDP algorithm via single neural
network

It is well known that neural networks can be used to approx-
imate smooth functions on prescribe compact sets [29,30]. The
cost function ViðxðtÞÞ is approximated at each step by a critic neural
network

V̂ i ðxðtÞÞ ¼ ðWL
i ÞTϕðxðtÞÞ ¼ ∑

L

j ¼ 1
ωj
iϕjðxðtÞÞ; ð29Þ

where the activation function ϕjðxðtÞÞ : Ω-R is continuous,
ϕjðxðtÞÞjx ¼ 0 ¼ 0, the neural network weights of the ith step are
ωi
j, and L is the number of hidden layer neurons. The vector

ϕðxðtÞÞ � ½ϕ1ðxðtÞÞ ϕ2ðxðtÞÞ ⋯ ϕLðxðtÞÞ�T is the vector activation func-
tion and WL

i � ½ω1
i ðxðtÞÞ ω2

i ðxðtÞÞ ⋯ ωL
i ðxðtÞÞ�T is the weight vector at

the ith step.
The critic weights are tuned at each step to minimize the

residual error between V̂ i ðxðtÞÞ and the target function defined in
(30) in a least squares sense over a set of points within a compact
set Ω

EðxðtÞ; xðtþhÞ;WL
i ; ûiðxðtÞÞÞ

¼
Z tþh

t
xðτÞTQxðτÞþ ûiðxðτÞÞTRûiðxðτÞÞ dτþ V̂ i ðxðtþhÞÞ

¼
Z tþh

t
xðτÞTQxðτÞþ ûiðxðτÞÞTRûiðxðτÞÞ dτþðWL

i ÞTϕðxðtþhÞÞ: ð30Þ

The residual error becomes

eL ¼ ðWL
iþ1ÞTϕðxðtÞÞ�EðxðtÞ; xðtþhÞ;WL

i ; ûiðxðtÞÞÞ: ð31Þ
To find the least squares solution, the method of weighted

residuals is used. Then the weights Wi
L are determined by

projecting the residual error onto ð∂eLðxðtÞÞ=∂WL
i Þ and setting the

result to zero 8xAΩ, i.e.,

∂eLðxðtÞÞ
∂WL

i

; eLðxðtÞÞ
* +

¼ 0; ð32Þ

where 〈f ; g〉¼ RΩfgTdx is a Lebesgue integral. When expanded, (32)
becomes

0¼
Z
Ω
ϕðxðtÞÞðϕT ðxðtÞÞWL

iþ1�ET ðxðtÞ; xðtþhÞ;WL
i ; ûiðxðtÞÞÞ dxðtÞ:

ð33Þ
Selecting activation functions fϕjðxðtÞÞgL are linearly independent
on the compact set ΩDRn, then

R
ΩϕðxðtÞÞϕT ðxðtÞÞ dxðtÞ is of full

rank and invertible, so the unique solution for WL
iþ1 exists and is

given as

WL
iþ1 ¼

Z
Ω
ϕðxðtÞÞϕT ðxðtÞÞ dxðtÞ

� ��1

�
Z
Ω
ϕðxðtÞÞET ðxðtÞ; xðtþhÞ;WL

i ; ûiðxðtÞÞÞ dxðtÞ: ð34Þ

Updating the value function neural network until the neural
network weights converges, then the policy is updated as

ûiþ1ðxÞ ¼ �1
2
R�1gðxðtÞÞT ∂ϕðxðtÞÞ

∂xðtÞ

� �T

WL
iþ1: ð35Þ
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Note that (6) and (7) do not need the internal dynamics, and
gðxðtÞÞ is only needed to update the control using (35), so the
method works for a system with partially unknown dynamics.

The optimal control of nonlinear continuous-time systems can
be obtained by going through the following steps:

1. Initialize the weights Wi
L and set the computation precision ε.

2. Compute the iterative performance control law u0ðxðtÞÞ by (4),
then obtain the iterative performance value V1ðxðtÞÞ by (5).

3. Let i¼ iþ1. Update the action ûiðxðtÞÞ by (35), then compute
the weights WL

iþ1 using (34), and obtain the value function
V̂ iþ1ðxðtÞÞ by (29).

4. If jV̂ iþ1ðxðtÞÞ� V̂ iðxðtÞÞjoε holds, go to step 5. Else, go to step 3.
5. Return the optimal value and control law.

The NN implementation of the value-iteration based HDP algo-
rithm for discrete-time nonlinear systems can be found in [13].

5. Numerical simulation

In this section, two examples are given to demonstrate the
effectiveness of the proposed methods. The basis functions are
generated from a fourth-order polynomial as

ϕðxÞ ¼ fx21; x1x2; x22; x41; x31x2; x21x22; x1x32; x42g; ð36Þ
which can be constructed from the expansion of the polynomial [5]

∑
N=2

j ¼ 1
∑
n

i ¼ 1
xiðtÞ

 !2j

; ð37Þ

where N is the order of approximation and n is the dimension of the
system. The polynomial approximation is also used in the standard
Weierstrass high-order approximation theorem.

Example 1 (Continuous-time case). Consider the following non-
linear continuous-time system:

_x1ðtÞ
_x2ðtÞ

" #
¼ �0:5 x1ðtÞþx2ðtÞþ2 x32ðtÞ

�2ðx1ðtÞþx2ðtÞÞ

" #
þ

0
sin x1ðtÞ

" #
uðxðtÞÞ: ð38Þ

The initial state x0 ¼ ½0:5 �0:5�T and the performance index is
given as

Jðxð0ÞÞ ¼
Z 1

0
xðτÞTQxðτÞþuðxðτÞÞTRuðxðτÞÞ dτ; ð39Þ

where Q ¼ I2 and R¼1.

The sampling period h¼ 0:1 s and the NN training error is set to
10�6, then the weights of the value function converge to

Wn ¼ ½0:7333;0:1333;0:2833; �0:0335;0:0448;
�0:0660;0:0744;0:2934�:

The evolution process of the weights is shown in Fig. 1.
The states trajectories are shown in Fig. 2. Apparently, the

states converge to the origin, which indicates that the system is
stable under the resulting control shown in Fig. 3.

In practical applications, a stabilized initial control for a non-
linear system is usually difficult to obtain. Compared with the
general policy-iteration algorithm with k¼1 (which is in fact a
variant of the value-iteration algorithm) in [10], the stabilized
initial control is not required using our method.

Example 2 (Discrete-time case). Consider the discrete-time non-
linear system xkþ1 ¼ f ðxkÞþgðxkÞuðxkÞ, where

f ðxkÞ ¼
sin x1k
x1kx2k

" #
; gðxkÞ ¼

0:4
�0:2

� �
:
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Fig. 1. The evolution process of the weights.
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Fig. 2. The evolution process of the states.

Fig. 3. The evolution process of the optimal control.
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The initial state is x0 ¼ ½1 �1�T and the performance index is
chosen as (19) and the weight matrices are chosen as Q ¼ I2;R¼ 1.
The NN training error is selected as 10�6.

The algorithm runs 401 iteration steps to make sure that the
given compute precision 10�6 has been achieved. The convergence
process of state trajectories and the control inputs is shown in
Figs. 4 and 5, respectively. The corresponding value function is
given in Fig. 6. We can see that although the compute precision is
not achieved, the state trajectories still converge to the origin,
which indicates the corresponding optimal control are stabilized.
In Fig. 7, (27) is satisfied by showing the 3-D plot of error between
V401ðxkÞ�V400ðxkÞ and Uðxk;u400ðxkÞÞ, the error is less than zero
globally in the square area ½�1;1� � ½�1;1�, which implies the
iterative control law u400ðxkÞ is stabilized. This further confirms our
developed theory.

In the work [26,28], to obtain stabilized iterative control laws,
the initial value function used for iterations can only be obtained
by recurrent algorithms. By contrast, our method can obtain

stabilized iterative control laws using any given initial value
functions (for simplicity, let V0ðxÞ ¼ 0). Therefore, our method is
more simple.

6. Conclusion

In this paper, the value-iteration based HDP algorithm has been
employed to solve the optimal control for the continuous time
nonlinear systems. Stability issues of the value-iteration based
heuristic dynamic programming (HDP) algorithm for nonlinear
systems have been investigated. Novel stability results for the HDP
algorithm has been presented, which indicates that the resulting
iterative control laws after finite iterations can guarantee the
closed-loop stability of the nonlinear systems, rather than only
the limit function of the iterative control sequence. Therefore, the
practicality of the HDP algorithm has been greatly improved. Single
neural network (NN) structure has been employed to implement
the proposed HDP algorithm without knowing the internal dyna-
mics of the systems. Two numerical examples have been given to
demonstrate the effectiveness of the developed methods.

Fig. 4. The state trajectories.
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Fig. 5. The control inputs.

Fig. 6. The value function.

Fig. 7. The error between V401ðxkÞ�V400ðxkÞ and Uðxk;u400ðxkÞÞ.
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The value-iteration based HDP algorithm considered in this
paper is a partial model-free method. It is known that we can trans-
form the original nonlinear system into a new augment system by
using a compensator, which allows us to implement the value-
iteration based HDP algorithm without knowing any knowledge of
the original nonlinear system. This is left to the future study.
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Appendix

Proof of Theorem 1. The assumption (8) implies that

δ�1
1þθ

θ

Z tþh

t
xðτÞTQxðτÞþuðxðτÞÞTRuðxðτÞÞ dτ� JnðxðtþhÞÞ

" #
r0: ð40Þ

Next, we will demonstrate the left hand side of the inequality
(9) by mathematical induction. For i¼1, we obtain

V1ðxðtÞÞ ¼min
u

V0ðxðtþhÞÞþ
Z tþh

t
xðτÞTQxðτÞþuðxðτÞÞTRuðxðτÞÞ dτ

" #

Zmin
u

δJnðxðtþhÞÞþ
Z tþh

t
xðτÞTQxðτÞþuðxðτÞÞTRuðxðτÞÞ dτ

" #

Zmin
u

δ�δ�1
θþ1

� �
JnðxðtþhÞÞ

�

þ 1þθ
δ�1
θþ1

� �Z tþh

t
xðτÞTQxðτÞþuðxðτÞÞTRuðxðτÞÞ dτ

#

¼ 1þδθ

θþ1
min

u
JnðxðtþhÞÞþ

Z tþh

t
xðτÞTQxðτÞþuðxðτÞÞTRuðxðτÞÞ dτ

" #

¼ 1þ δ�1
1þθ�1

� �
JnðxðtÞÞ:

Assume that for i�1, it holds that

1þ δ�1

ð1þθ�1Þi�1

" #
JnrVi�1;

then, we have

ViðxðtÞÞ ¼min
u

Vi�1ðxðtþhÞÞþ
Z tþh

t
xðτÞTQxðτÞþuðxðτÞÞTRuðxðτÞÞ dτ

" #

Zmin
u

1þ δ�1

ð1þθ�1Þi�1

" #
JnðxðtþhÞÞ

(

þ
Z tþh

t
xðτÞTQxðτÞþuðxðτÞÞTRuðxðτÞÞ dτ

)

Zmin
u

1þðδ�1Þθi
ðθþ1Þi

" #Z tþh

t
xðτÞTQxðτÞþuðxðτÞÞTRuðxðτÞÞ dτ

(

þ 1þ δ�1

ðθ�1þ1Þi�1�
ðδ�1Þθi�1

ðθþ1Þi

" #
JnðxðtþhÞÞ

)

¼ 1þðδ�1Þθi
ðθþ1Þi

" #
min

u

"
JnðxðtþhÞÞ

þ
Z tþh

t
xðτÞTQxðτÞþuðxðτÞÞTRuðxðτÞÞ dτ

#

¼ 1þ δ�1

ð1þθ�1Þi

" #
JnðxðtÞÞ:

The left hand side of (9) is proved and the right hand side can
be shown by the same way.

Let the iteration index i go to infinity, then we obtain

lim
i-1

1þ δ�1

ð1þθ�1Þi

" #
JnðxðtÞÞ ¼ JnðxðtÞÞ

and

lim
i-1

1þ ω�1

ð1þθ�1Þi

" #
JnðxðtÞÞ ¼ JnðxðtÞÞ:

Therefore, V1ðxðtÞÞ ¼ JnðxðtÞÞ, u1ðxðtÞÞ ¼ unðxðtÞÞ. □
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