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This review focuses on the effects of different environmental
temperatures on the neuromuscular system. During short
duration exercise, performance improves from 2% to 5%
with a 1 °C increase in muscle temperature. However, if
central temperature increases (i.e., hyperthermia), this
positive relation ceases and performance becomes impaired.
Performance impairments in both cold and hot environment
are related to a modification in neural drive due to protective

adaptations, central and peripheral failures. This review
highlights, to some extent, the different effects of hot and
cold environments on the supraspinal, spinal and peripheral
components of the neural drive involved in the up- and down-
regulation of neuromuscular function and shows that tem-
perature also affects the neural drive transmission to the
muscle and the excitation-contraction coupling.

From a cardio-vascular to a neuromuscular approach
in environmental physiology

In the years following (and even preceding) the
Second World War, there has been a large amount
of research on the effect of thermal conditions on
exercise capacity in humans (e.g., Dill et al., 1938;
Eichna et al., 1945; Adolph et al., 1947; Bazett, 1949;
Hardy, 1949). During the following 50 years, most of
researches examining the consequences of exercising
in a cold environment — or cold water — focused on
health and safety issues (e.g., Shephard, 1985; Lin,
1988; Doubt, 1991); whereas the research in hot
environments focused on cardiovascular adaptations
(e.g., Williams et al., 1962; Leithead & Lind, 1964;
Strydom et al., 1966; Wyndham et al., 1968; Rowell,
1974; Brengelmann, 1983; Sawka et al., 1983). How-
ever, the 1990s saw a slight shift in research focus
from a health and cardiovascular model to a neural
model. Indeed, the cardiovascular adaptations were
unable to explain some observations, such as the
decrement in muscle activation observed with passive
hyperthermia in the 2000s (Morrison et al., 2004;
Thomas et al., 2006; Racinais et al., 2008).

One of the first studies to investigate the effect of
environmental conditions on the central nervous
system (CNS) concluded that there was an alteration
in cortical excitability of hyperthermic (central tem-
perature increased up to 44—45 °C) anesthetized cats
(Bulochnik & Ziablov, 1977). In humans, cerebral

adaptations to environmental temperature have been
studied from both a circulatory (e.g., Nybo & Niel-
sen, 2001b; Nybo et al., 2002; Rasmussen et al., 2004)
and neural (e.g., Nielsen et al., 2001; Nybo &
Nielsen, 2001c; Todd et al., 2005) perspectives during
this last decade. Briefly, hyperthermia has been
shown to reduce brain perfusion (Nybo & Nielsen,
2001b; Nybo et al., 2002; Rasmussen et al., 2004) and
increase or decrease metabolic rate in different brain
areas (Nunneley et al., 2002). These modifications
impair heat loss from the brain (Nybo et al., 2002)
and reduce cerebral oxygenation during hyperther-
mic strenuous exercise (Rasmussen et al., 2010) but
may not affect prefrontal cortex oxygenation during
passive hyperthermia (Morrison et al., 2009). In
parallel, modifications in electroencephalographic
(EEG) activity have been observed with hyperther-
mia (Nielsen et al., 2001; Nybo & Nielsen, 2001c;
Rasmussen et al., 2004). These modifications suggest
a decrement in arousal in humans exercising up to
hyperthermia (i.e., central temperature higher than
39 °C) (Nielsen et al., 2001) and were associated with
an increase in perceived exertion (Nybo & Nielsen,
2001c; Rasmussen et al., 2004). The modification in
EEG activity and the increase in perceived exertion
do not appear to be a simple effect of the reduced
cerebral perfusion but may be related with the fatigue
that arises concomitantly with the increase in central
and brain temperatures during exercise-induced hy-
perthermia (Rasmussen et al., 2004).
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However, neural drive investigations cannot be
limited to cerebral adaptation. For example, it was
observed that hyperthermia decreased voluntary ac-
tivation without affecting motor cortical excitability
(Todd et al., 2005). The authors pointed to a failure
of descending voluntary drive to compensate for
changed muscle properties, despite the availability
of additional cortical output (Todd et al., 2005).
Thus, investigating cerebral changes without taking
into account the peripheral modifications in the
neuromuscular system does not capture the complex-
ity of the supraspinal adaptation. In addition, it has
recently been shown that the decrement in muscle
activation with hyperthermia was partly linked to
some peripheral failure in the transmission of the
neural drive (Racinais et al., 2008).

Therefore, we believe that peripheral neuromuscu-
lar adaptation has to be taken into account when
investigating the effect of environmental conditions.
In addition, the relationship between temperature
and both neural and muscular function implies that
both hot and cold environments should be consid-
ered. After discussing the effect of environmental
temperature on “‘Neuromuscular performance’ this
review focuses on the temperature dependency of
the ““Neural drive”, spinal adaptations (Spinal
modulation), peripheral nerves (Peripheral nerve
adaptations) and the muscular system (Muscle
function).

Neuromuscular performance

The effect of the environmental temperature on
neuromuscular performance is related to exercise
duration, especially in a hot environment (Exercise
duration). Performance during short duration exer-
cise (e.g., jump, sprint, muscle force and power) can
be considered as an indicator of the integrated
functioning of the neuromuscular system. This kind
of performance is widely recognized to deteriorate in
a cold environment but can be improved in a hot
environment, which acts as a passive warm-up
(Bishop, 2003; Racinais, 2010). From the data ob-
tained in both cold and hot conditions, a relationship
between muscle temperature and performance can be
established (Dose/response relationship). This relation
is a function of contraction type and velocity (Con-
traction velocity). However, an improvement in per-
formance in hot environment has not always been
observed. Hot environments only seem to improve
muscle performance in the morning, when the body
temperature is at its lowest; however, if central
temperature continue to increase there is a reduction
in voluntary force production (Local vs central tem-
peratures).
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Exercise duration

It has been well established that a decrease in muscle
temperature in a cold environment induces profound
changes in neuromuscular function (Denys, 1991).
Practically all aspects of neuromuscular function,
(i.e. mechanical, biochemical and neural), are dete-
riorated with lowered muscle temperature. Conver-
sely, warming-up the muscle can improve muscle
function and performance (Bishop, 2003) but also
reduce the time to fatigue (Thornley et al., 2003). In
addition, although an increase in muscle temperature
may improve power production during a short dura-
tion cycling sprint, this difference disappears if the
sprints are repeated (Linnane et al., 2004) suggesting
that the effect of a hot environment are dependent of
exercise duration. Power decrement during a re-
peated-sprints exercise was observed to be greater
with hyperthermia (induced by exercise in hot envir-
onment, 40 °C) than in control condition (Drust
et al., 2005) leading the authors to conclude that
the attainment of an elevated central temperature
could negatively affect performance when sprints
have to be repeated (Drust et al., 2005). In contin-
uous activity as in repeated sprints, the shift from
improvement to impairment in human ability to
exercise in hot environment seems to be related
with the increase in central temperature when ex-
ercise is prolonged. As presented in Table 1, this shift
is related with exercise duration (Table 1, Parts A, B
and C). The studies reported in the Part A observed
an improvement in human performance in a hot
environment or following passive whole body
warm-ups. In all instances, when performances im-
proved test duration ranged from <1s (i.e., vertical
jump) to 30 (i.e., cycling exercise). The studies in the
Part B failed to observe a marked effect of a hot
environment on human performance. All these per-
formances involved repetition of short duration ex-
ercise or exercise of ~ 5Smin in duration. The studies
reported in the Part C are based on exercise lasting
more than 10 min and observed a decrement in hu-
man performance in hot environment. From the
studies presented in the Part A of the Table 1 —
showing a consistent temperature/performance rela-
tionship — it is possible to determine a dose/response
relationship.

Dose/response relationship

The rate of deterioration in muscle performance is
strongly associated with decreasing muscle tempera-
ture. The more muscle temperature decreases the
more muscular performance decreases and thus,
there is a dose-dependent relationship between these
factors. In the work of Oksa et al. (1997) eight
subjects were exposed to 27 °C, 20 °C, 15°C and
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Table 1. Different effects of an increase in body temperatures on human physical abilities as a function of exercise characteristics and duration

Reference

Effect of body temperatures increase

Exercise duration Environmental condition

Part A: positive effect on human physical abilities

Segal et al. (1986) 1 muscle contractility
Davies and Young (1985) 1 muscle force

1 muscle contractility
1 muscle force

1 power output

1 muscle force

1 peak power output
1 power output

Binkhrorst et al. (1977)
Bergh and Ekblom (1979)

Falk et al. (1998)
Sargeant (1987)
Linnane et al. (2004) 1 mean power output
Ball et al. (1999) 1 peak power output
Part B: no effect on human physical abilities

Dotan and Bar-Or (1980) = power output
Backx et al. (2000) power output
Linnane et al. (2004) mean power output
Falk et al. (1998) peak power output

Hue et al. (2003) = power production

Part C: negative effect on human physical abilities

Voltaire et al. (2002) { incremental exercise duration
Gonzalez-Alonso et al. (1999) { time to exhaustion

Nybo and Nielsen (2001a) { time to exhaustion

<1s Muscle in vitro, water bath
<1s Water bath

Water bath
Water bath and exercise

Few seconds
Few seconds

5x15s Warm environment

20s Water bath

30s Water bath and warm environment
2 x 30s Warm environment

30s Warm environment

2 x (3 x30s) Warm environment

Water bath before warm environment
Warm environment

2nd sprint of 30s
2nd series of

5x15s

5min Warm environment

~ 10-15min Warm environment

~ 28-63 min Water bath before warm environment

~ 50 min or more Warm environment

1, improvement; =, no significant effect; |, decrement.

28
26
24 1
22 1
20

18 1

Jump height (cm)

16 1

14 T T T T T T T T T T
29 30 31 32 33 34
Muscle temperature (°C)

Fig. 1. Correlation between muscle temperature and jump
height of the drop jump. Each point represents eight subjects
except at 1, n =7 and 2, n = 3. Modified with kind permis-
sion of Springer Science+Business Media from Oksa et al.
(1997). Eur J Appl Physiol 75: 484-490 and Oksa et al.
(1996a, b). Human Mov Sci 15: 591-603.

10 °C air for 60 min wearing minimal clothing (shorts
and jogging shoes). After each exposure the subjects
performed maximal drop jump and the flight time of
the jump (corresponding to the height of the jump)
was measured. During the exposures the muscle
temperature from calf (m. gastrocnemius medialis)
was measured from the depth of 3cm. Figure 1
summarizes the relationship between muscle tem-
perature and height of the jump and shows a sig-
nificant correlation.

Passive rewarming has been used as a method to
return muscle force back to thermoneutral level and
Oliver et al. (1979) found that at room temperature
1 h is enough to restore cooling induced decrement in
muscle force. However, active rewarming is more
efficient way to restore reduced performance capa-
city. In the study of Oksa et al. (1996a,b) eight
subjects were allowed to do rewarming exercise after
being cooled at 10 °C for 60 min. After cooling, they
performed a drop jump and then walked on a tread-
mill for 5 min at a velocity of 5km/h, then performed
another drop jump and walked again. After three
walking bouts (15min) the thermoneutral muscle
temperature and after four walking bouts (20 min)
thermoneutral jump flight time was obtained. Thus,
there is a dose-dependent relationship also between
active rewarming (exercise) and recovery in perfor-
mance. It may be concluded that the most important
factor in determining the outcome of performance is
muscle temperature (Fig. 1).

Muscle power production or jump height was
reduced after immersion of the leg in a cold bath
(Bergh & Ekblom, 1979; Sargeant, 1987) but im-
proved if the leg was immersed in a hot bath (Bergh
& Ekblom, 1979; Davies & Young, 1985; Sargeant,
1987). From the studies relating modifications in
short-duration exercise performance associated with
muscle temperature recording, it is possible to esti-
mate a range of variation in muscle force and/or
power per degree of variation in muscle temperature
(Table 2). From the data presented in the Table 2, a
variation in muscle temperature of 1 °C can modify
performance by 2-5% depending on the contraction
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Table 2. Variation (%) in muscle force/power for 1°C variation in muscle temperature

Reference Variation (%) in muscle
force/power for 1°C of

variation in muscle temperature

Test Methodology used to
modify muscle temperature

Oksa et al. (1995) 2.4
Sargeant (1987) 3
4
Bergh and Ekblom (1979) 2.1
4.2
4.4
47
47
49
51
Oksa et al. (19964, b) 5.4

60 min in a room at 10°C

Water bath 12-18°C (45 min)
Water bath 44°C (45 min)

Cooling by water bath and warming
by exercise

Balls throw
Cycle ergo meter

Leg force 0°/s
Vertical jump
Peak velocity
Mean velocity
Leg force 90°/s
Leg force 180°/s
Cycle power

Drop jump Room at 10°C (60 min)

The relation within muscle force/power and muscle temperature is positive: an increase in muscle temperature improves muscle force/power whereas a
decrease in muscle temperature impairs muscle function. This relation can be quantified by the percentage of variation in muscle force/power for 1°C

variation in muscle temperature.

type and velocity. Generally speaking, there is a
positive relationship between the magnitude of the
effect of temperature and the movement velocity.

Contraction velocity

Following water immersion in water bath ranging
from 18 °C to 39 °C, muscle power and the velocity
of contraction increased in parallel with muscle
temperature whereas muscle force was not affected
(Binkhorst et al. 1977). This suggests that high
velocity movements are more temperature dependent
than low velocity movement. This assumption is
supported by the fact that dynamic exercises are
more affected by temperature than isometric con-
tractions (Bergh & Ekblom, 1979). In addition,
optimal pedalling velocity during a 20 s cycling sprint
is also positively linked with temperature (Sargeant,
1987). Several studies on muscle contractile proper-
ties have shown that the rate of contraction is slower
with subnormal muscle temperatures, leading to less
powerful contractions (e.g. Bigland-Ritchie et al.,
1992; De Ruiter & De Haan, 2000). During exercise,
this translates to power decrements when tempera-
ture decreases and power increments when tempera-
ture increases and more so at high (cycling at 140 rev/
min) than slow (cycling at 54 rev/min) movement
velocities (Sargeant, 1987). This was also confirmed
in upper body muscles (Oksa et al., 1995) where
cooling-induced decrements in ball throwing exercise
was higher with light ball (0.3 kg, faster movement,
9.4% reduction in performance) than with heavier
ball (2.0kg, slower movement, 5.6% reduction in
performance).

Cooling also affects the relationship between force
production and velocity. The force—velocity curve is
shifted to the left (De Ruiter & De Haan, 2001),
which means that at a given force the velocity of
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movements or muscle contraction decreases after
cooling. It also means that maximal power and force
in a cooled muscle occurs with a slower muscle
contraction velocity than in a thermoneutral muscle
(De Ruiter & De Haan, 2001). Regarding the force—
time curve a similar shift has been observed meaning
that in a given time less force is produced after
cooling the muscle (Clarke & Royce, 1962). That
could be explained by slower cross-bridges cycling,
thus lowering the rate of force development without
affecting maximal isometric force.

Local vs central temperatures

In line with the experiments based on water immer-
sion of the exercising muscle, a cold environment
markedly decreases muscle power (Hackney et al.,
1991; Oksa et al., 1995, 1996a, b, 2000). However, the
effects of a hot environment are equivocal. Some
studies observed similar power output in neutral and
hot environments (Dotan & Bar-Or, 1980; Backx et
al., 2000), whereas others have observed a higher
power output in hot environments than in neutral
conditions (Falk et al., 1998; Ball et al., 1999). It was
recently hypothesized that one of the confounding
factors responsible for these different observations
could be the circadian rhythm of the body tempera-
ture (Racinais, 2010). Indeed, in the morning, when
body temperature is at its lowest, a hot environment
can improve muscle contractility (Racinais et al.,
2005), muscle force (Racinais et al., 2005) and
short-duration performance (Racinais et al., 2004).
Cold exposure; however, decreases performance in
both the morning and the afternoon (Racinais et al.,
2009).

Another explanation for the variability of the
effect of a hot environment on muscle function is
the level and the kind of temperature considered.



Following the dose/response relationship presented
in section “Dose/response relationship”, an increase
in muscle temperature can increase muscle power.
However, this is not a linear relationship as there
is a ceiling above which increasing the environ-
mental temperature does not improve maximal
power output (Racinais et al., 2006). In addition,
exposure to hot environments increases central
temperature, whereas, it is an increase in local
temperature that improves power output (Falk
et al., 1998). As presented in the section ‘“‘Exercise
duration™, an increase in central temperature when
exercise is prolonged can even reduce the maximal
power output during sprint cycling (Drust et al.,
2005). It is central temperature rather than local
thermal afferent input from the skin that seems to
be responsible for the alteration in neural drive
(Thomas et al., 2006). This is supported by animal
models that have observed rats to stop exercising in a
hot environment at the same abdominal and cerebral
temperatures regardless of the modification made to
their initial temperature (Fuller et al., 1998) and
goats to reduce velocity or refuse to move when
cerebral temperature increases close to 42°C
(Caputa et al., 1986). In the human brain, heat loss
is inadequate during prolonged exercise with hy-
perthermia, leading to higher brain than central
temperature (Nybo et al., 2002). Combined, these
studies suggest that cerebral temperature could also
be a key factor leading to an alteration in physical
activity.

It is important to note that a reduction in volun-
tary maximal force has also been observed after
passive hyperthermia (Morrison et al., 2004; Thomas
et al., 2006; Racinais et al., 2008) suggesting that
central temperature is the key factor, independently
of any exercise-induced fatigue. When passive expo-
sure to a hot environment increases central tempera-
ture close to 39 °C force production is reduced due to
decrement in voluntary activation (Morrison et al.,
2004; Thomas et al., 2006; Racinais et al., 2008), i.e.
decrement in the neural drive to the muscle.

Neural drive

Both hot and cold environments influence muscle
electrical activity (Environmental condition and mus-
cle electrical activity). A hot environment decreases
voluntary activation (Voluntary activation failure in
hot environment) whereas a cold environment alters
co-activation and the agonist-antagonist ratio
(Coactivation changes in cold environment). These
adaptations can represent a physiological alteration
but can also represent a protective adaptation (Fail-
ure or modulation?).

Temperature and neuromuscular function

Environmental condition and muscle electrical activity

The electrical activity (EMG) of the muscle may be
substantially affected by cooling (e.g. Rissanen et al.,
1996). The literature is not unanimous is regards to
the changes in EMG amplitude as some studies
report decreased amplitude due to cooling (Bell,
1993; Petrofsky & Laymon, 2005) while others report
increased amplitude (Piedrahita et al. 2008).
Although the difference between studies may be
explained by different exercise types and cooling
procedures, Petrofsky and Laymon (2005) reported
that EMG amplitude correlates positively with in-
creasing force production regardless of temperature
variation and may therefore be considered as reliable
indicator of muscle strain in various conditions. The
literature more uniformly reports that cooling de-
creases the frequency component EMG and that the
decrement seems to depend fairly linearly on the level
of cooling (Petrofsky & Lind, 1980). For example, a
30min exposure of the forearm to 10 °C water in
comparison with 40 °C water decreased the fre-
quency from approximately 180 to 100 Hz (Petrofsky
& Lind, 1980). The decrement in frequency compo-
nent has been connected with simultaneous decrease
in nerve conduction velocity (Mucke & Heuer, 1989).

During exercise in the heat, EMG activity has been
observed to decrease (Kay et al., 2001; Tucker et al.,
2004, 2006) or remain unchanged (Ftaiti et al., 2001;
Hunter et al., 2002). However, it is difficult to draw
conclusions from these data as muscle drive during
exercise depends on exercise intensity (i.e., maximal
vs sub-maximal) and protocol type (i.e., self-paced vs
fixed intensity). From the data obtained during a
maximal voluntary contraction (MVC) performed
following active hyperthermia, EMG is not affected
during brief (~ 4 to 5s) MVC (Nybo & Nielsen,
2001a; Saboisky et al., 2003) but is decreased with
prolonged (Nybo & Nielsen, 2001a) or repeated
contractions (Martin et al., 2005). However, as a
reduction in EMG has also been reported following
exercise in a neutral environment (Racinais et al.,
2007), only data from passive heat exposure should
be considered to conclude on the effect of a hot
environment on neural drive. In addition, environ-
mental temperature can also affect surface EMG
data by changing the electrophysiological properties
of the skin—electrode pair (e.g., sweating, gel melt-
ing). Therefore, only data on voluntary activation
obtained during passive hyperthermia and with elec-
trical stimulation of the motor nerve should be
considered.

Voluntary activation failure in hot environment

A decrement in the voluntary activation has been
observed in the leg extensors without alteration in the
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forearm flexors after cycling exercise inducing a heat
stress (Saboisky et al., 2003), which suggests a
selective reduction in the voluntary activation of
the exercising muscle (Saboisky et al., 2003). How-
ever, others observed similar impairments in the
voluntary activation of both the exercising (knee
extensors) and non-exercising (handgrip) muscles
after cycling to exhaustion in hot environment
(Nybo & Nielsen, 2001a). This suggests that the
reduction in voluntary activation is linked with the
temperature rather than exercise-induced fatigue
(Nybo & Nielsen, 2001a). This second hypothesis is
supported by several studies that have observed a
decrement in voluntary activation with passive hy-
perthermia (Morrison et al., 2004; Thomas et al.,
2006; Racinais et al., 2008), which confirm that a
high body temperature per se can reduce voluntary
muscle activation.

Voluntary activation is not altered more after
exercising in hot than in neutral environment during
the first seconds ( ~ 10s) of contraction but further
decreases as the contraction becomes more pro-
longed (Nybo & Nielsen, 2001a). This suggests that
the capacity of the CNS to maximally activate the
muscle may be altered by hyperthermia only if force
output has to be sustained for more than a few
seconds (Nybo & Nielsen, 2001a; Martin et al.,
2005). Given that comparable data have been ob-
served in a neutral environment with an earlier and
larger central activation deficit during a continuous
than an intermittent elbow extension task (Bilodeau,
2006), it is difficult to discriminate the relative role of
the temperature and the exercise in these previous
data. In the absence of exercise, passive hyperthermia
has been shown to reduce voluntary activation even
during contraction of 10 or less seconds (Morrison
et al., 2004; Thomas et al., 2006; Racinais et al.,
2008), In addition, Racinais et al. (2008) showed that
during a 120s contraction passive hyperthermia in-
duces an additional decrease in voluntary activation.
This additional decrease was not explained by addi-
tional failure in the peripheral transmission of the
neural drive suggesting the occurrence of supraspinal
failure when contraction is prolonged (Racinais et
al., 2008). The possibility of a supraspinal failure
during a prolonged contraction with hyperthermia is
supported by the observation that hyperthermia does
not affect the amplitude of a superimposed twitch
evoked by motor cortex stimulation during a brief
MVC but this amplitude increases more during a
sustained maximal effort in hyperthermia than in
neutral environment (Todd et al., 2005).

Coactivation changes in cold environment

Neural drive alterations in cold environment differ
from those in hot environment. Whereas hyperther-
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mia seems to decrease the amount of activation of
the agonist muscle, a cold environment mainly
acts on the agonist—antagonist relation. During hu-
man locomotion the antagonist muscle contracts
simultaneously with the agonist muscle, a phenom-
enon called co-activation. In normal conditions co-
activation is desired and helps to keep movement
“smooth.” However, literature reports that cooling
has a clearly modulating input on the co-activation
by increasing it. Bawa et al. (1987) found that during
extension of the elbow the antagonist muscle (.
biceps brachii) co-activated significantly more while
subjects were cooled, whereas in thermoneutrality
mainly the agonist (m. triceps brachii) was active.
More recently, Oksa et al. (2002) found that during
wrist flexion extension work in cold the level of co-
activation was significantly higher when compared
with thermoneutral conditions. A similar phenom-
enon was previously found in the studies of Oksa
et al., (1995, 1997) where during the concentric phase
of the muscle contraction the activity of the antago-
nist muscle was significantly increased during cooling
and at the same time the activity of the agonist
decreases significantly, a phenomenon named as
“braking effect”. These two changes may be the
mechanistic reasons for the decreased muscular per-
formance in the cold. In addition, it seems that
another reason underlying these changes is the re-
duced activity of the muscle spindles (Oksa et al.,
2000). However, it has been shown that a cooling
induced increase in the level of co-activation can be
reduced by intermittently changing work intensity
from low to moderate or high (Oksa et al., 2006).
Humans can adapt to cold, especially in terms of
thermal responses, but also at the level of the
neuromuscular system. Few efforts have been made
to see if repeated local (forearm) cold water exposure
(8 °C water, 30 min/day/10 days) can induce neuro-
muscular adaptations (Geurts et al., 2005, 2006).
These studies failed to show any adaptation in the
time to peak tension or relaxation rate. However,
very recently the study of Westerlund et al. (2009)
showed that 3 months of to whole body cryotherapy
(WBC, extremely cold air, — 110 °C) was able to
induce adaptations in neuromuscular performance.
In that study 14 subjects were exposed to WBC three
times a week for 2min minimally clad. Before and
after the exposure period, the subjects performed
dynamic drop jump exercise. EMG was simulta-
neously recorded from ankle extensor (m. gastrocne-
mius medialis, agonist during shortening phase) and
flexor (m. tibialis anterior, antagonist during short-
ening phase) muscles. At the beginning of the WBC
period there was a significant reduction in the flight
time of the drop jump (from 436 &+ 17 to 420 & 16 ms,
P <0.05) but this difference was not significant after
3-month WBC (from 434 +17 to 427 £ 17, ns)



\

777 m. gastrocnemius
300 1 | ZZZZ2 m. tibialis anterior

250 A

200 -

150 ~

100 -

aEMG (uV)

50

0 .
3 month

0 month

—-50 -

Fig. 2. The difference in averaged EMG activity before and
after whole body cryotherapy (WBC) of m.gastrocnemius
(agonist) and m. tibialis anterior (antagonist) muscles during
the shortening phase of the drop jump in the beginning
(0 month) and after (3 month) 3-month exposure period. The
values are mean £ SE. Modified with permission from
Westerlund et al. (2009). J Therm Biol 34: 226-231.

(Westerlund et al., 2009). Similarly, during the short-
ening phase of the drop jump the agonist activity
increased and antagonist activity decreased after the
3-month WBC indicating significantly reduced co-
activation (Fig. 2). The reduced co-activation possi-
bly induced the observed smaller difference in flight
time (increased performance). These results point
towards the possibility that neuromuscular system
is able to adapt when systematic cold exposure of
sufficient duration is applied.

Failure or modulation?

The reduced activity of the agonist muscle associated
with an increased activity of the antagonist muscle in
cold environments could be interpreted as a strategy
to prevent cold tissues from injury (Oksa et al., 1995,
1996a, b). The decrement in voluntary activation in
hot environment has also been hypothesized to
represent a conscious or unconscious anticipatory
decrement in voluntary motor drive to avoid further
heat production and protect the body (and the brain
itself) from an additional rise in temperature (Mar-
ino, 2004; Tucker et al., 2004, 2006). Supporting this
hypothesis, it has been observed that both power
output and EMG activity during a self-paced time-
trial decreases in hot conditions before body tem-
peratures becomes extremely high, suggesting an
anticipatory response adjusting muscle recruitment
to reduce heat production (Tucker et al., 2004).
Exercise intensity has been proposed to be down-
regulated by the rate of heat storage to maintain
homeostasis by reducing the exercise work rate
(Tucker et al., 2006; Altareki et al., 2009). The theory
of an adaptation from the CNS to protect the body
was first developed to explain the force decrement of
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respiratory muscles following exercise due to decre-
ment in neural drive (Verin et al., 2004), which could
represent a protective mechanism in order that mus-
cle fatigue does not exceed a critical threshold
(Amann et al., 2006). However, the theory of an
anticipatory decrement in exercise intensity cannot
be transposed to passively induced hyperthermia and
other sources of modulation and/or failure have to be
considered. On one hand, it can be argued that the
neural adaptations to both cold and hot environ-
ments can be linked to a modulation occurring up-
stream of the motor cortex, commonly referred to as
“Motivation,” “Arousal” or “Will.” On the other
hand, neural drive modifications can also be a con-
sequence of some peripheral adaptations occurring at
any stage from the motor cortex to the sarcolemma,
including the spinal cord.

Spinal modulation

As detailed in “Neural drive”, environmental condi-
tions have been shown to alter the neural drive of the
exercising muscle. This alteration is generally evi-
denced by changes in EMG activity and can be
considered as a physiological failure or a protective
mechanism. However, a modification in CNS output
is not proof of cortical adaptation but can also be a
consequence of a spinal modulation of the suprasp-
inal outputs. There is numerous evidence that spinal
loop properties are modified in both cold (Spinal
modulation in cold environment) and hot (Spinal
modulation in hot environment) environments as com-
pared with neutral conditions.

Spinal modulation in cold environment

Peripheral regulation of the neural drive is mainly
conducted through reflex pathways, with the stretch
reflex (T-reflex) playing a major role. Stretch reflex is
a monosynaptic, ipsilateral spinal reflex which is
activated by stretching the muscle spindles (during
the stretch phase of stretch-shortening cycle, tapping
the tendon or causing a flexion of a joint), which in
turn facilitates the following contraction of the
agonist muscle and inhibits the contraction of the
antagonist muscle (Matthews, 1964). Both a-moto-
neuron excitability and y-motoneuron sensitivity
affect stretch reflex responses, which may be divided
into short (SL), medium (ML) and long (LL) latency
responses. SL is a spinal response, ML is considered
to be a delayed spinal response (because of use of
slower nerve fibers, e.g. spindle group II afferents)
and LL a central (supraspinal) response (Duchateau
& Hainaut, 1993; Schieppati & Nardone, 1997).
Many studies concerning the effects of cooling on
stretch reflex have shown that cooling suppresses
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stretch reflex amplitude (e.g. Denys, 1991). There is
evidence that the suppressed T-reflex amplitude is
due to decreased activity of the muscle spindles and
thus decreased y-motoneuron excitability (Bell &
Lehmann, 1987) and these changes may reduce
muscle force production. However, it also has been
shown that during low-intensity repetitive work in
cold (when forearm muscle strain is higher in relation
to same work in thermoneutral condition), stretch
reflex responses are enhanced. When applying local
cooling on the forearm, SL and ML responses are
enhanced and when applying whole body cooling
also LL response is enhanced (Oksa et al., 2002). This
probably indicates that the increased strain of the
working muscles were met by increasing the reflex
activity during local cooling, therefore, in the cold
more muscle fibers are recruited in order to maintain
the given work level. However, in the case of whole
body cooling also increased supraspinal neural drive
from the CNS was required (Oksa et al., 2000) in
order to perform the required work. In addition to
changes in stretch reflex, substantial alteration in H-
reflex and M-wave has been reported (Oksa et al.,
2000; Coulange et al., 2006). In the cold air exposure
(10 °C, 60min) Oksa et al. (2000) found increased
H s/ M pmax-ratio and H-reflex amplitude reflecting
increased excitability of the motoneuronal pool, both
v and o. This increased excitability of the moto-
neuron pool may possibly be explained by increased
sensory input from the cutaneous afferents and/or
increased supraspinal drive from the CNS (Oksa
et al., 2000, 2002).

Spinal modulation in hot environment

One of the major sites for modulation in the motor
drive is the spinal cord. In neutral environments,
spinal modulation of the neural drive has been
observed after an isometric contraction maintained
until exhaustion (Duchateau & Hainaut, 1993; Duch-
ateau et al., 2002) or after submaximal running
exercise (Racinais et al., 2007). As this modulation
can be partly related to presynaptic inhibition
mediated by temperature sensitive group III and IV
afferents (Bigland-Ritchie et al., 1986; Woods et al.,
1987; Garland & McComas, 1990; Garland, 1991;
Duchateau et al., 2002; Avela et al., 2006) a spinal
modulation of the neural drive is likely to occur in a
hot environment. This is supported by recent findings
showing that passive hyperthermia reduces the am-
plitude of the reflex waves (H-reflex) whether ex-
pressed absolutely or normalized by the change
occurring at sarcolemmal level (Fig. 3) (Racinais
et al., 2008). H-reflex decrements were confirmed
by a decrease in V-waves, an electrophysiological
variant of the H-reflex (Racinais et al., 2008). These
decrements in electrically evoked reflex waves can be
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Fig. 3. Example of electrically evoked action potentials
recorded at rest (top graph) and during maximal voluntary
contraction (MVC, bottom graph) in one subject in both
neutral (—) and hot (- - - -) environment. A hot environment
significantly decreased the maximal amplitude of an electri-
cally induced action potential (M) as well as the maximal
amplitude of an electrically induced H-reflex (Hy,x) or its
electrophysiological variant during contraction (Vy,p). Re-
produced with permission from Racinais et al. (2008).

linked to both the inhibition/control loop acting
presynaptically and alterations in the excitability of
the postsynaptic element, i.e. the motoneuron (Raci-
nais et al., 2008). Presynaptically, the decline in
transmission from the Ia afferent stimulation to o-
motoneuron excitation could be a consequence of a
presynaptic inhibition mediated by groups III and IV
afferents (Bigland-Ritchie et al., 1986; Woods et al.,
1987; Garland & McComas, 1990; Garland, 1991;
Duchateau et al., 2002; Avela et al., 2006). The
duration of this presynaptic inhibition will depend
on whether the input that is producing the inhibition
is ongoing or has ceased. As these afferents are
sensitive to temperature, which is an ongoing factor
when exercise is performed in hot environments,
input of groups III and IV muscle afferents could
represent a valuable explanation for a decrement in
spinal reflexes amplitude (Racinais et al., 2008).
However, maintaining the muscle in an ischemic
state does not affect the altered responses to tran-
scranial stimulation (Gandevia et al., 1996; Taylor
et al., 2000; Andersen et al., 2003) suggesting that
groups III and IV muscle afferents do not directly
inhibit motoneurons but act upstream of the motor
cortex to impair voluntary descending drive (Taylor
et al., 2006). Therefore, also alterations in the
excitability of the postsynaptic element (i.e., the



motoneuron) has to be considered to explain the
decrements previously observed in both muscle elec-
trical activity and H-reflex amplitude.

Peripheral nerve adaptations

A hot environment can increase maximal muscle
force via an improvement of the muscular contractile
properties  (Neuromuscular — performance); how-
ever, hyperthermia reduces muscular performance
by decreasing motor drive (Neural drive). As detailed
above, the decrements previously observed in
both muscle electrical activity (Neural drive) and H-
reflex amplitude (Spinal modulation) could be a con-
sequence of an altered excitability of the a-moto-
neurons and/or the sarcolemma. Various studies in
humans and animals suggest that high temperature
could reduce the amplitude of the action potential
(Neural and sarcolemmal excitability). There is also a
positive relationship between temperature and nerve
conduction velocity with a slowing down of the nerve
conduction velocity in cold environment (Conduction
velocity). In addition, the effect of temperature on a
motor unit seems to be dependent on the character-
istic of the motor unit (Effect of nerve diameter and
motor unit type) and it can be difficult to differentiate
in vivo the adaptation occurring at the level of the
nerve from the muscle.

Neural and sarcolemmal excitability

The decrement in muscle electrical activity generally
observed in hot environment has been partly attrib-
uted to supraspinal adaptations (see Neural drive).
However, the decrement in the amplitude of an
electrically evoked H-reflex (Spinal modulation) sug-
gests that a hot environment also impairs the trans-
mission of the neural drive at peripheral level (i.e.,
spinal cord or peripherally). Results from animal
experiments support this hypothesis. A decrease in
the amplitude of an electrically evoked action poten-
tial when temperature increases was described 60
years ago in squid axon (Hodgkin & Katz, 1949;
Huxley, 1959), frog myelinated fibers (Schaepfle &
Erlanger, 1941) or single myelinated fiber of rat
ventral root (Bostock et al., 1978). In humans, a
negative linear correlation has been observed be-
tween temperature and the latency, amplitude, dura-
tion and area of the action potential;, all these
parameters are decreasing when temperature rises
(Bolton et al., 1981). At low temperatures, the
voltage-gated sodium channel remains open for a
longer period of time, increasing the amplitude,
duration and area of a single axon potential (Rut-
kove et al., 1997). The opposite occurs at high
temperature, thus reducing the amplitude of the
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action potential. However, although the effects of
temperature are well understood at the single fiber
level, complexities arise when studying compound
action potentials in vivo (Rutkove et al., 1997). For
example, opposite effects have been observed de-
pending on whether the entire segment was cooled
or only a small area around the recording site (Lang
& Puusa, 1980).

The amplitude of an evoked action potential
has been observed to be reduced by passive heating
of the upper limb following the same pattern as a
single motor unit; probably as a consequence of
temperature-dependant variations in the ion channel
function of both muscle and nerve membrane
(Rutkove et al., 1997). Following whole body passive
hyperthermia, Racinais et al. (2008) recorded
muscle action potentials (M-wave) of humans’ in
hot environment and found that both the maximal
M-wave at rest (M., and during contraction
(Myyp) were significantly decreased with hyperther-
mia (Fig. 3). This suggests that a given amount of
(electrically induced) neural drive failed to induce an
equivalent sarcolemmal action potential in hy-
perthermia. This decrement can be explained by
failures in the motor nerve and the sarcolemma
themselves as well as in the synaptic transmission at
neuromuscular junction. In vitro studies confirm this
by showing modification in synaptic transmission at
high temperature (Kelty et al., 2002). The stimulation
of a nerve causes the release of a variable number of
quanta per impulse during a train of stimuli, but if
post-synaptic quantal units go undetected following
a stimulus, this is termed as a failure (Karunanithi et
al., 1999). It was previously observed that at 22 °C all
the synapses produced one or more quantal events
for each nerve impulse without any failure. But,
as temperature increased, the amplitude of the
response declined and failures became evident until
transmission completely failed when the nerve tem-
perature reached 35 °C (Karunanithi et al., 1999).
However, these observations were carried out in vitro
in Drosophila synapses with a range of temperatures
lower than those recorded in vivo in hyperthermic
humans.

Interestingly, a decrement in resting M-waves has
also been observed after locally heating the leg
(Dewhurst et al., 2005), which was attributed to a
shortening of the depolarization time when tempera-
ture increased, consequently allowing less Na+ to
enter the cell (Rutkove, 2001). In addition, cooling
the head during whole body hyperthermia does not
protect from M-waves decrements in a hot environ-
ment (Racinais et al., 2008). Collectively, these
data suggest that the decrement in M-wave is not a
central adaptation but represents a peripheral failure
in the transmission of the neural drive from the
a-motoneuron to the sarcolemma or in the motor
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nerve and/or the sarcolemma themselves. Given that
Rutkove et al. (1997) observed that local warming of
the arm reduced the amplitude of the action potential
in both sensory and motor nerve without altering the
neuromuscular transmission, changes in the a-moto-
neuron and the sarcolemma have to be considered
with hyperthermia. The neuromuscular junction
function seems poorly influenced by temperature
due to a very high safety factor, with far more
acetylcholine released with a given stimulus than
necessary to induce a muscle fiber depolarization
(Rutkove, 2001). In addition, the synaptic transmis-
sion can be partly protected by preconditioning and
heat shock proteins (Karunanithi et al., 1999; Kelty
et al., 2002).

Conduction velocity

As presented above, a decrease in the amplitude of
the action potentials when temperature increases has
been described in both animals and humans. How-
ever, the average decrease is generally modest (Stege-
man & De Weerd, 1982) and a decrease in the
duration of these action potentials has even been a
more consistent observation and is more marked
than the fall in amplitude when temperature in-
creases (Bolton et al., 1981). Inversely, an increase
in the duration of the action potential (broadness)
has been reported when temperature decreases
(Buchthal & Rosenfalck, 1966; Ludin & Beyeler,
1977). A relationship between temperature and the
duration of the action potential has been observed
even without modification in the amplitude of the
response (Todnem et al., 1989).

In addition, temperature also affects the velocity of
propagation (De Jesus et al., 1973). Conduction
velocity in both sensory and motor fibers increase
non-linearly when temperature increases (Todnem
et al., 1989). Similarly, distal motor latencies increase
also non-linearly when temperature decreases (Tod-
nem et al., 1989). Conduction velocity increases with
increasing temperature (Rutkove et al., 1997) but the
effect of temperature is most pronounced in the low
temperature range (Todnem et al., 1989). This slow-
ing-down in nerve conduction velocity with cooling
could induce a slower and weaker muscle contrac-
tion. However, the reduced nerve conduction velo-
city in cold environments may result in an increased
temporal summation leading to increased EMG
amplitude response (Oksa et al., 2000), which in
part may explain the differences found in the litera-
ture regarding EMG amplitude responses. The de-
crease in nerve conduction velocity has been reported
to have a Q¢ (an indicator of temperature sensitivity
per every 10 °C change in temperature of a tissue) of
approximately 1.4 and the absolute decrement in
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velocity to vary between 1.1 and 2.4m/s/ °C (Denys,
1991).

Effect of nerve diameter and motor unit type

The decrement in conduction velocity is dependent
on the fiber class, with larger-diameter, faster con-
ducting fibers having higher temperature sensitivity
(Gasser & Grundfest, 1939; Douglas & Malcolm,
1955; Goldman & Albus, 1968; Rutkove, 2001). At
the level of the muscle, the shortening velocity is also
more influenced by temperature changes in fast fibers
than in slow fibers (Bennett, 1984) and the fast motor
units have been suggested to be more temperature
dependant than slow motor units (Faulkner et al.,
1990). However, fiber type does not seem to influence
the effect of temperature on the time to peak tension
(Ranatunga, 1980; Petrofsky & Lind, 1981) or on
isometric force (Ranatunga, 1980; Petrofsky & Lind,
1981). As presented above, the effects of temperature
on an isolated cell (e.g., nerve or muscle fiber) are
easier to characterize than the effect of temperature
on humans in vivo; and some neuromuscular changes
due to environmental conditions could reflect either
neural or muscular modifications. For example, cool-
ing can change motor unit recruitment pattern so
that with a certain submaximal work level more and
faster motor units are recruited in order to maintain
the given work level (Rome, 1990; Oksa et al., 2002).
This can be seen as significantly increased EMG
activity for a given amount of work. Oksa et al.
(2002) showed that, during a 10%MVC wrist flex-
ion—extension work, EMG activity was approxi-
mately 30% higher during whole body or local
forearm cooling than in thermoneutral working
condition.

Muscle function

In vivo, the peripheral neural modifications detailed
above affect the whole neuromuscular system and the
motor nerve cannot be considered without the in-
nervated muscle. A cold environment can slow down
the contraction of the muscle (Slowing of the muscle
contraction in cold environment) and has a potential
effect of muscle strain (Muscle strain in cold environ-
ment). Hot temperatures modify the mechanical
properties of the muscle fiber (Muscle function and
temperature in vitro) but the effects of hot environ-
ment on exercising humans are more complex (Mus-
cle function in hot environment in vivo).

Slowing of the muscle contraction in cold environment

The decrement in muscular performance in a cold
environment can also be explained by alterations in
the functional properties of skeletal muscle. Litera-



ture reports that the rate of tension development in
the beginning of muscle contraction i.e. the time to
maximum force level (twitch or tetanic tension) is
temperature dependent (De Ruiter & De Haan,
2000). The temperature sensitivity (Qo) of the rate
of tension development was reported to be approxi-
mately 1.5 (Ranatunga et al., 1987) but later higher
values have also been reported to vary from 2.0 to 3.6
(De Ruiter & De Haan, 2000). Recently it was
reported that electromechanical delay (EMD) is
also longer in cold. After 30 min immersion on 5 °C
water, the EMD was increased by 24.6% (Kubo et
al., 2005). Similar temperature dependence has been
found also for the rate of relaxation at the end of
muscle contraction. It is generally described as half
relaxation time i.e. the time from the maximum
tension to 50% of the maximum tension and also
as late half relaxation time from 50% to 25%MVC.
The Q¢ of the rate of relaxation in humans has been
reported to be approximately between 1.7 and 2.3
(Ranatunga et al., 1987) but the more sensitive
late half relaxation time has Q¢ values from 2.1 up
to 6.9 (De Ruiter et al., 1999; De Ruiter & De Haan,
2000).

Two other factors that are also important for
muscle function are elasticity and stiffness, and the
knowledge regarding the effect of cooling on them is
sparse. Asmussen et al. (1976) showed that the
stiffness (i.e. the ratio between force and length
changes) of the muscle—tendon entity does not sig-
nificantly change due to cooling and more recently
Kubo et al. (2005) reported similar results. However,
previously it has been reported that at lower tem-
peratures the stiffness of tendons and joints increase
(Hunter et al., 1952). Asmussen et al. (1976) studied
also the effect of cooling on the capacity of the
muscles to utilize their elastic properties by compar-
ing the jump height of static and countermovement
jump. It was found that the “gain” in height i.e. the
increase in the countermovement jump height in
relation to the height of the static jump increased
after cooling. Simultaneously, the EMG activity of
the working muscles during countermovement jump
increased. These results led to the conclusion that the
utilization of elastic components of the muscle is
enhanced after cooling. However, indirect but to
some extent contradictory results have also been
presented. Large reductions in performance capacity
(17% decrease per 1 °C decrease in muscle tempera-
ture) have been reported during a drop jump, an
exercise mode that effectively utilizes the elastic
components during muscle contraction (Oksa et al.,
1997). When comparing this with an exercise of
similar nature and duration (upper body exercise,
ball throwing) a reduction of only 2.4% was found
(Oksa et al., 1995). Therefore, it may be premature to
draw definitive conclusions on how cooling effects
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the ability of the muscles to utilize their elastic
properties.

Cooling can also affect muscle co-ordination thus
altering the accuracy of motion trajectory and main-
tenance of force at a desired level. The studies of
Meigal et al. (1998, 2003) showed that coefficient of
force variation (CoFv) increased in cold conditions
and especially when shivering. For example, during
shoulder flexion the CoFv in thermoneutral condi-
tion was ca. 5%, whereas during shivering it in-
creased to 10% (P<0.05). Even though the subjects
were able to keep the desired force level fairly
accurately the variability of force production around
the desired level was greater in the cold and during
shivering (Meigal et al., 1998, 2003). More recently,
Dewhurst et al. (2007) compared the CoFv between
young and older subjects and found that in older
subjects CoFv was changed in low (0-3 Hz), middle
(4-6Hz) and high (8-12 Hz) frequency force signal
bands, whereas in the young there was only a change
in high frequency band. This implies that similarly as
performance capacity is gradually decreased when
aging proceeds so is the ability to accurately control
force production.

It has also been shown that motion trajectory can
change due to low ambient temperature. The study of
Piedrahita et al. (2008) showed that during simulated
packing work the vertical amplitude of the motion
trajectory of the shoulder, elbow and wrist were
significantly higher when performing the work in
cold as compared with a thermoneutral condition.
The result was the same regardless whether the work
was performed with whole body cooling or in the cold
but adequately dressed (Piedrahita et al., 2008). This
indicates that the inter-joint coordination of the upper
arm in cold is altered in relation to thermoneutral
condition and may increase the strain of work.

Muscle strain in cold environment

Recently, it has been found that the so called EMG
gaps (a short period, less than a second, of very low
muscle activity or even rest) are very sensitive to cold
ambient temperature as well as to muscle cooling
(Oksa et al., 2006; Piedrahita et al., 2008). These two
studies showed that during low intensity repetitive
work in the cold the occurrence of EMG gaps was
reduced between 2% and 90%, depending on the
muscle studied, the great variation being possibly due
to different tasks and composition of the muscle.
This probably reflects that the normal variation in
fiber recruitment has diminished and that only very
low threshold fibers may be active throughout the
work (Hédgg, 1991; Sjo6gaard & Sogaard, 1998). Pre-
viously it has been found that future trapezius
myalgia patients had a lower frequency of EMG
gaps (<10.8 gaps per minute) than nonpatients
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(more than 10.8 gaps per minute) and a regression
analysis revealed that low rate of EMG gaps predicts
future patient status (Veiersted et al. 1993). It also
has been shown that low intensity repetitive work (at
10%MYVC level) in cold induces approximately 30%
higher strain and fatigue to the working muscles
(Oksa et al., 2002) and that, together with lower
frequency of EMG gaps, may pose a substantial risk
for overuse complaints, symptoms and disorders in
the cold.

However, it has been shown that intermittently
increasing the work intensity from low to moderate
(10% to 30%MVC, every fourth minute) the amount
of EMG gaps can be restored from an average of
6.9 £ 1.1 (work only with 10%MVC) to 12.4 £ 1.0
gaps/minute (work intermittently increased to
30%MVC, P<0.05) (Oksa et al., 2006). Interest-
ingly, Veiersted et al. (1993) showed that those who
were predicted to be at risk for future trapezius
myalgia patient status experienced <10.8 gaps/min-
ute. It may be concluded that an increased amount of
EMG gaps reflects more evenly distributed work
load (Oksa et al., 2006) thus, possibly reducing the
risk for overuse symptoms.

Muscle function and temperature in vitro

Low muscle temperature potentially slows-down
chemical reactions in the muscle (Oksa et al.,
1996a,b), delays the cross-bridge cycle (Asmussen
et al., 1976) and decreases actomyosin sensibility to
calcium (Hartshorne et al., 1972). In hot environ-
ments the effects of temperature on time to peak
tension, half-relaxation time or maximal shortening
velocity are less marked (Bennett, 1984). However,
in vitro experiments showed that increasing tempera-
ture shorten the time to peak twitch tension and the
half relaxation time of the muscle in an exponential
fashion (Segal et al., 1986). Consequently, the force—
time curve is shifted to the right when temperature
increases. This shift has been related to the accom-
panying increases in myosin adenosine triphospha-
tase (ATPase) activity (Barany, 1967) and calcium
sequestration by the sarcoplasmic reticulum (Stein et
al., 1982), and increasing the kinetic of the isometric
twitch (Close & Hoh, 1968; Ranatunga, 1982). Con-
versely, decreasing temperature from 35 to 10 °C,
in vitro (with 5 °C intervals) results in almost a linear
decrease in maximum shortening velocity and rate of
tension development. When comparing fast (extensor
digtorum longum) and slow (soleus) muscles the slow
muscle seems to be more temperature sensitive,
especially in the lower temperature half (from 20 to
10 °C), than fast muscle (Ranatunga, 1982, 1984).
The maximum tetanic force can also be improved by
increasing temperature (Close & Hoh, 1968; Stephen-
son & Williams, 1981; Segal et al., 1986) possibly by
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improving contractile protein binding (Stephenson &
Williams, 1981); however, this may not be the case in
all muscles (Segal et al., 1986). However, an increase
in temperature across the standard range experienced
in vivo (i.e., from 37 to 43 °C) has not been observed
to modify the absolute force of the muscle fiber
(Place et al., 2009).

The temporal characteristics of contraction and
relaxation are shortened when temperature is in-
creased (Close & Hoh, 1968; Petrofsky & Lind,
1981; Ranatunga, 1982; Segal & Faulkner, 1985).
Thus the stimulation frequency required to sustain a
given level of force increased (Segal et al., 1986),
increasing the energy cost of the contraction (Rome
& Kushmerick, 1983). Consequently, the time to
reach fatigue is inversely related to temperature
(Segal et al., 1986). However, relationship between
fatigue and temperature observed in situ (Petrofsky &
Lind, 1981) and in vivo (Clarke et al., 1958; Edwards
et al., 1972) is not linear but bell-shaped. Interest-
ingly, if the number of stimuli required to reach
fatigue in vitro is analyzed, it also shows a bell-
shaped relation with temperature (Segal et al.,
1986). Experiments on skinned muscle fiber have
shown that inorganic phosphate accumulation de-
creases force production (Cooke et al., 1988; Godt &
Nosek, 1989) and this has been proposed to be as one
of the main triggers for muscle fatigue. In addition,
the sensitivity of active force to inorganic phosphate
decreases when temperature increases from low tem-
perature (e.g., laboratory room temperature) to phy-
siological temperature (Coupland et al., 2001). This
suggests that, if inorganic phosphate is the under-
lying cause of fatigue, fatigue would be less at
physiological temperature than at low temperature
and, therefore, explain the ascending part of the bell-
shaped relation discussed above. Following the same
model, while acidosis has large negative effects on
contractile function at low temperatures, the effects
are limited at higher, more physiological tempera-
tures (Ranatunga, 1987; Pate et al. 1995; Westerblad
et al., 1997). However, an increase in muscle tem-
perature increases reactive oxygen and nitrogen spe-
cies production (Zuo et al., 2000; Van der Poel &
Stephenson, 2002; Arbogast & Reid, 2004; Edwards
et al., 2007). Recent studies confirm that muscle fiber
fatigability decrease when its temperature is in-
creased from low temperature to more physiological
values (Roots et al., 2009). However, increasing
temperature in the range of the physiological values
(i.e., from 37 to 43 °C) does not seem to affect the
fatigability of the muscle fiber (Place et al., 2009).

Muscle function in hot environment in vivo

In vitro experiments are suitable to determine the
intrinsic properties of the muscle. However, in vivo,



muscle mechanical responses cannot be limited to the
muscle fiber as it also involves the non-contractile
material as well as interactions between the different
fibers. For example, an increase in temperature
decreases the viscous resistance of muscle and joints
(Hill, 1927; Buchthal et al., 1944; Wright & Johns,
1961). Increasing temperature can also affect muscle
metabolism by improving the release of oxygen from
haemoglobin (McCutcheon, 1999) and myoglobin
(Theorell, 1934). The rate of ATP utilization has
also been proposed to be increased when exercising
in the heat; matched by an increase in anaerobic
glycolysis and creatinine phosphate hydrolysis
(Febbraio et al., 1994, 1996). Lastly, whereas in vitro
experiments are performed in a controlled environ-
ment independently of blood flow or innervations;
in vivo, hot temperatures will affect the muscle envir-
onment by increasing the local vasodilatation (Kar-
vonen, 1978) or changing the properties of the nerve
and sarcolemmal action potential (see above).

The outcome is that muscle efficiency (i.e., the level
of force for a given quantity of neural drive) can be
improved in hot environment as compared with
neutral temperature (Racinais et al., 2005). However,
given that circadian rhythms can affect the response
to a hot environment (for a review see Racinais,
2010), a hot environment only improves muscle
contractility in the morning but not in the afternoon
(Racinais et al., 2005).

In addition, during exercise, heat production oc-
curs in the muscle leading the temperature of the
working mammalian muscle up to 1-2 °C higher
than the central temperature (Baracos et al., 1984).
When muscle temperature increases, protein degra-
dation increase more than protein synthesis (Baracos
et al., 1984) and hyperthermia stimulates the degra-
dation of muscle proteins (Luo et al., 2000). Proteo-
lysis and ultrastructural damage have been observed
in vitro when muscle temperature increases from 32
to 42 °C (Baracos et al., 1984; Essig et al., 1985)
potentially impairing force development. However,
tetanic force in soleus fibers is not altered when
temperature increased from 37 to 43 °C suggesting
that muscle fibers can tolerate a temperature ~ 6 °C
above in situ temperature without displaying any
decrease in tetanic force production (Place et al.,
2009). Elevating muscle temperature to the extreme
physiological range decreases its contractility (Van
der Poel & Stephenson, 2002), but this change is
reversible (Van der Poel & Stephenson, 2002).

Summary

Exercise capacity has been widely related to both the
environmental and body temperatures. Numerous
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studies have focused on the negative effect of hot
environments on the capacity to sustain exercise but
temperature is also modifying the neuromuscular
function during short duration activity. During short
duration exercise, there is a positive relationship
between performance and muscle temperature; i.e.,
neuromuscular function is impaired by cold tempera-
ture and improved by hot temperature. The variation
in performance ranges from 2% to 5% by 1 °C of
change in muscle temperature and is more marked
for fast than slow movement. However, if central
temperature increases (i.e., hyperthermia), this posi-
tive relation stops and performance becomes im-
paired.

Performance impairments in both cold and
hot environments are partly related to a modification
in neural drive. The amount of voluntary neural
drive is reduced with hyperthermia whereas cold
temperatures alter coactivation and coordination.
These adaptations are partly linked to physiological
failures but could also be partly linked to protective
adaptations to reduce the risk of injury or hyper-
thermia. Neural drive in both cold and hot environ-
ments is also affected by changes of the spinal loop
properties.

Peripherally, there is a positive relationship
between temperature and nerve conduction velo-
city; i.e., a negative relation between temperature
and depolarization time. Consequently, there is
also a negative relationship between temperature
and the latency, duration (broadness) and the area
of an action potential, as well as its amplitude.
A positive relation between temperature and
contraction velocity has also been observed at the
level of the muscle; i.e., a decrement in the rate of
both muscle contraction and relaxation when tem-
perature decrease. Increasing temperature can poten-
tially increase the tetanic force by improving
contractile protein binding but the shortening of
the contraction and relaxation time lead the necessity
of a higher stimulation frequency to sustain a given
level of force. That potentially increases the energy
cost of the contraction and the fatigability of
the muscle, but maybe not in the in vivo temperature
range.

Key words: thermoregulation, muscle, nerve, spinal
reflex, central nervous system (CNS).
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