
The Prolog programs presented so far are declarative since they admit a dual reading
as a formula. The treatment of arithmetic in Prolog compromises to some extent its
declarative underpinnings. However, it is difficult to come up with a better solution
than the one offered by the original designers of the language. The shortcomings of
Prolog’s treatment of arithmetic are overcome in the constraint logic programming
languages.

15.6.1 Arithmetic Operators
Prolog provides integers and floating point numbers as built-in data structures, with
the typical operations on them. These operations include the usual arithmetic oper-
ators such as +, -, ∗ (multiplication), and // (integer division).

Now, according to the usual notational convention of logic programming and
Prolog, the relation and function symbols are written in the prefix form, that is in
front of the arguments. In contrast, in accordance with their usage in arithmetic, the
binary arithmetic operators are written in infix form, that is between the arguments.
Moreover, negation of a natural number can bewritten in the bracketless prefix form,
that is, without brackets surrounding its argument.

This discrepancy in the syntax is resolved by considering the arithmetic operators
as built-in function symbols written in the infix or bracketless prefix form with infor-
mation about their associativity and binding power that allows us to disambiguate
the arithmetic expressions.

Actually, Prolog provides a means to declare an arbitrary function symbol as an
infix binary symbol or as a bracketless prefix unary symbol, with a fixed priority that
determines its binding power and a certain mnemonics that implies some (or no)
form of associativity. An example of such a declaration was the line :- op(1100, yfx,
arrow). used in the above-type assignment program. Function symbols declared in
this way are called operators. Arithmetic operators can be thus viewed as operators
predeclared in the language “prelude.”

In addition to the arithmetic operatorswealsohave at our disposal infinitelymany
integer constants and infinitely many floating point numbers. In what follows, by a
number, we mean either an integer constant or a floating point number. The arith-
metic operators and the set of all numbers uniquely determine a set of terms.We call
terms defined in this language arithmetic expressions and introduce the abbreviation
gae for ground (i.e., variable free) arithmetic expressions.

15.6.2 Arithmetic Comparison Relations
With each gae, we can uniquely associate its value, computed in the expected way.
Prolog allows us to compare the values of gaes by means of the customary six arith-
metic comparison relations

Krzysztof R. Apt

The Logic Programming Paradigm and Prolog

Abstract

15.7 Control, Ambivalent Syntax, and Meta-Variables 497

15.7.1 Cut

To deal with such problems, Prolog provides a low level built-in nullary relation
symbol called cut and denoted by “!”. To explain its meaning we rewrite first the
above clauses using cut:

In the resulting analysis, two possibilities arise, akin to the above case distinction.
First, if B is true (i.e., succeeds), then the cut is encountered. Its execution

� discards all alternative ways of computing B,
� discards the second clause, p(x) :- T., as a backtrackable alternative to the current

selection of the first clause.

Both items have an effect that in the current computation some clauses are not
available anymore.

Second, if B is false (i.e., fails), then backtracking takes place and the second
clause is tried. The computation proceeds now by directly evaluating T.

So using the cut and the above rewriting we achieved the intended effect and
modelled the if B then S else T fi construct in the desired way.

The above explanation of the effect of cut is a good starting point to provide its
definition in full generality.

Consider the following definition of a relation p:

Here, the i th clause contains a cut atom. Now, suppose that during the execution of
a query, a call p(t) is encountered and eventually the i th clause is used and the indi-
cated occurrence of the cut is executed. Then the indicated occurrence of ! succeeds
immediately, but additionally

1. all alternative ways of computing B are discarded, and
2. all computations of p(t) using the i th to kth clause for p are discarded as back-

trackable alternatives to the current selection of the i-clause.

The cut was introduced to improve the implicit control present through the combi-
nation of backtracking and the textual ordering of the clauses. Because of the use of
patterns in the clause heads, the potential source of inefficiency can be sometimes
hidden somewhat deeper in the program text. Reconsider for example the QUICKSORT
program of Section 15.6 and the query ?- qs([7,9,8,1,5], Ys). To see that the resulting
computation is inefficient, note that the second clause defining the part relation fails
when 7 is compared with 9 and subsequently the last, third, clause is tried. At this
moment 7 is again comparedwith 9. The same redundancy occurswhen 1 is compared
with 5. To avoid such inefficiencies the definition of part can be rewritten using cut
as follows:

Of course, this improvement can be also applied to the QUICKSORT DL program.
Cut clearly compromises the declarative reading of the Prolog programs. It has

been one of themost criticized features of Prolog. In fact, a proper use of cut requires
a good understanding of Prolog’s computation mechanism and a number of thumb
rules were developed to help a Prolog programmer to use it correctly. A number of
alternatives to cut were proposed. The most interesting of them, called commit, en-
tered various constraint and parallel logic programming languages but is not present
in standard Prolog.

15.7.2 Ambivalent Syntax and Meta-variables

Before we proceed, let us review first the basics of Prolog syntax mentioned so far.

1. Variables are denoted by strings starting with an upper case letter or “ ”
(underscore). In particular, Prolog allows so-called anonymous variables, writ-
ten as “ ” (underscore).

2. Relation symbols (procedure identifiers), function symbols, and nonnumeric
constants are denoted by strings starting with a lower case letter.

3. Binary and unary function symbols can be declared as infix or bracketless
prefix operators.

Now, in contrast to first-order logic, in Prolog the same name can be used both for
function symbols and for relation symbols. Moreover, the same name can be used
for function or relation symbols of different arity. This facility is called ambivalent
syntax. A function or a relation symbol f of arity n is then referred to as f/n. Thus, in
a Prolog program, we can use both a relation symbol p/2 and function symbols p/1
and p/2 and build syntactically legal terms or atoms like p(p(a,b),c,p(X)).

In presence of the ambivalent syntax, the distinction between function sym-
bols and relation symbols and between terms and atoms disappears, but in the
context of queries and clauses, it is clear which symbol refers to which syntactic
category.

The ambivalent syntax together with Prolog’s facility to declare binary function
symbols (and thus also binary relation symbols) as infix operators allows us to pass
queries, clauses and programs as arguments. In fact, “:-/2” is declared internally as an
infix operator and so is the comma “,/2” between the atoms, so each clause is actually
a term. This facilitates meta-programming, that is, writing programs that use other
programs as data.

In what follows, we shall explain how meta-programming can be realized in
Prolog. To this end, we need to introduce one more syntactic feature. Prolog per-
mits the use of variables in the positions of atoms, both in the queries and in the
clause bodies. Such a variable is called then a meta-variable. Computation in the
presence of themeta-variables is defined as before since themgus employed can also
bind the meta-variables. Thus, for example, given the legal, albeit unusual, Prolog
program (that uses the ambivalent syntax facility)

the execution of the Prolog query p(X), X. first leads to the query a. and then succeeds.
Here, a is both a constant and a nullary relation symbol.

Prolog requires that the meta-variables are properly instantiated before they
are executed. In other words, they need to evaluate to a nonnumeric term at the
moment they are encountered in an execution. Otherwise, a run-time error arises.
For example, for the above programand the query p(X), X, Y., the Prolog computation
ends up in error once the query Y. is encountered.

15.7.3 Control Facilities

Let us now see how the ambivalent syntax in conjunction with meta-variables sup-
ports meta-programming. In this section we limit ourselves to (meta-)programs that
show how to introduce new control facilities. We discuss here three examples, each
introducing a control facility actually available in Prolog as a built-in. More meta-
programs will be presented in the next section once we introduce other features of
Prolog.

Disjunction
To start with, we can define disjunction by means of the following simple program:

15.7 Control, Ambivalent Syntax, and Meta-Variables 499

Atypical query is then or(Q,R), whereQ andR are “conventional queries.”Disjunction
is a Prolog’s built-in declared as an infix operator “;/2” and defined by means of the
above two rules, with “or” replaced by “;”. So instead of or(Q,R) one writes Q ; R.

If-then-else
The other two examples involve the cut operator. The already discussed if B then S
else T fi construct can be introduced by means of the now-familiar program

In Prolog, if then else is a built-in defined internally by the above two rules.
if then else(B, S, T) is written as B -> S;T, where “→ /2” is a built-in declared as
an infix operator. As an example of its use, let us rewrite yet again the definition of
the part relation used in the QUICKSORT program, this time using Prolog’s B -> S;T. To
enforce the correct parsing, we need to enclose the B -> S;T statement in brackets:

Note that here we had to dispense with the use of patterns in the “output” positions
of part and reintroduce the explicit use of unification in the procedure body. By
introducing yet another B -> S;T statement to deal with the case analysis in the second
argument, we obtain a definition of the part relation that very much resembles a
functional program:

In fact, in this program all uses of unification boil down to matching and its use does
not involve backtracking. This example explains how the use of patterns often hides
an implicit case analysis. By making this case analysis explicit using the if-then-else
construct we end up with longer programs. In the end the original solution with the
cut seems to be closer to the spirit of the language.

500 The Logic Programming Paradigm and Prolog

Negation
Finally, consider the negation operation not that is supposed to reverse failure with
success. That is, the intention is that the query not Q. succeeds iff the query Q. fails.
This operation can be easily implemented by means of meta-variables and cut as
follows:

fail/0 is Prolog’s built-in with the empty definition. Thus, the call of the parameterless
procedure fail always fails.

This cryptic two-line program employs several discussed features of Prolog. In
the first line, X is used as a meta-variable. Now consider the call not(Q), where Q is a
query. If Q succeeds, then the cut is performed. This has the effect that all alternative
ways of computing Q are discarded and also the second clause is discarded. Next, the
built-in fail is executed and a failure arises. Because the only alternative clause was
just discarded, the query not(Q) fails. If, on the other hand, the query Q fails, then
backtracking takes place and the second clause, not(), is selected. It immediately
succeeds and so the initial query not(Q) succeeds. So this definition of not achieves
the desired effect.

not/1 is defined internally by the above two line definition augmented with the
appropriate declaration of it as a bracketless prefix unary symbol.

Call
Finally, let us mention that Prolog also provides an indirect way of using meta-
variables by means of a built-in relation call/1. call/1 is defined internally by this
rule:

call/1 is often used to “mask” the explicit use of meta-variables, but the outcome is
the same.

15.7.4 Negation as Failure

The distinction between successful and failing computations is one of the unique
features of logic programming and Prolog. In fact, no counterpart of failing compu-
tations exists in other programming paradigms.

The most natural way of using failing computations is by employing the negation
operator not that allows us to turn failure into success, by virtue of the fact that the
query not Q. succeeds iff the query Q. fails. This way we can use not to represent
negation of a Boolean expression. In fact, we already referred informally to this use
of negation at the beginning of Section 15.7.

This suggests a declarative interpretation of the not operator as a classical nega-
tion. This interpretation is correct only if the negated query always terminates and
is ground. Note, in particular, that given the procedure p defined by the single rule
p :- p. the query not p. does not terminate. Also, for the query not(X = 1)., we get the
following counterintuitive outcome:

15.7 Control, Ambivalent Syntax, and Meta-Variables 501

Thus, to generate all elements of a list Ls that differ from 1, the correct query is
member(X, Ls), not(X = 1). and not not(X = 1), member(X, Ls). One usually refers to
the way negation is used in Prolog as “negation as failure.” When properly used,
it is a powerful feature as testified by the following jewel program. We consider
the problem of determining a winner in a two-person finite game. Suppose that the
moves in the game are represented by a relation move. The game is assumed to
be finite, so we postulate that given a position pos the query move(pos, Y). gener-
ates finitely many answers, which are all possible moves from pos. A player loses
if he is in a position pos from which no move exists, i.e., if the query move(pos, Y).
fails.

A position is a winning one when a move exists that leads to a losing, i.e., non-
winning position. Using the negation operator, this can be written as

% win(X) :- X is a winning position in the two-person finite game
% represented by the relation move.
win(X) :- move(X, Y), not win(Y).

This remarkably concise program has a simple declarative interpretion. In con-
trast, the procedural interpretation is quite complex: the query win(pos). deter-
mines whether pos is a winning position by performing a minimax search on the
0–1 game tree represented by the relationmove. In this recursive procedure, the base
case appears when the call to move fails. Then the corresponding call of win also
fails.

15.7.5 Higher-Order Programming and Meta-Programming in Prolog

Thanks to the ambivalent syntax andmeta-variables, higher-order programming and
another form of meta-programming can be easily realized in Prolog. To explain this,
we need two more built-ins. Each of them belongs to a different category.

Term Inspection Facilities
Prolog offers a number of built-in relations that allow us to inspect, compare, and
decompose terms. One of them is =../2 (pronounced univ) that allows us to switch
between a term and its representation as a list. Instead of precisely describing its
meaning, we just illustrate one of its uses by means the following query:

The left-hand side, here Atom, is unified with the term (or, equivalently, the atom),
here square([1,2,3,4], Ys), represented by a list on the right-hand side, here [square,
[1,2,3,4], Ys]. In this list representation of a term, the head of the list is the leading
function symbol and the tail is the list of the arguments.

Using univ, one can construct terms and pass them as arguments. More inter-
estingly, one can construct atoms and execute them using the meta-variable facility.
This way it is possible to realize higher-order programming in Prolog in the sense that
relations can be passed as arguments. To illustrate this point, consider the following
program MAP:

502 The Logic Programming Paradigm and Prolog

In the last rule, univ is used to construct an atom. Note the use of the meta-variable
Atom. MAP is Prolog’s counterpart of the familiar higher-order functional program
and it behaves in the expected way. For example, given the program% square(X, Y)
:- Y is the square of X. square(X, Y) :- Y is X*X. we get

Program manipulation facilities
Another class of Prolog built-ins makes it possible to access and modify the program
during its execution.We consider here a single built-in in this category, clause/2 , that
allows us to access the definitions of the relations present in the considered program.
Again, consider first an example of its use in which we refer to the program MEMBER
of Subsection 15.5.1.

In general, the call clause(head, body) leads to a unification of the term head :- body
with the successive clauses forming the definition of the relation in question. This
relation, heremember, is the leading symbol of the first argument of clause/2 that has
to be a non-variable.

This built-in assumes that true is the body of a fact, heremember(X, [X |]). true/0
is Prolog’s built-in that succeeds immediately. Thus, its definition consists just of the
fact true. This explains the first answer. The second answer is the result of unifying
the term member(X,Y) :- Z with (a renaming of) the second clause defining member,
namely member(X, [| Xs]):- member(X, Xs).

Using clause/2, we can construct Prolog interpreters written in Prolog, that is,
meta-interpreters. Here is the simplest one:

Recall that (A,B) is a legal Prolog term (with no leading function symbol). To un-
derstand this program, one needs to know that the comma between the atoms is
declared internally as a right associative infix operator, so the query A,B,C,D actually
stands for the term (A,(B,(C,D))), etc.

The first clause states that the built-in true succeeds immediately. The second
clause states that a query of the form A, B can be solved if A can be solved and B
can be solved. Finally, the last clause states that an atomic query A can be solved if
there exists a clause of the form A :- B such that the query B can be solved. The cuts
are used here to enforce the a “definition by cases”: either the argument of solve is
true or a nonatomic query or else an atomic one.

To illustrate the behavior of the above meta-interpreter, assume that MEMBER is
a part of the considered program. We then have

This meta-program forms a basis for building various types of interpreters for larger
fragments of Prolog or for its extensions.

15.7 Control, Ambivalent Syntax, and Meta-Variables 503

15.8 ASSESSMENT OF PROLOG

Prolog, because of its origin in automated theorem proving, is an unusual program-
ming language. It leads to a different style of programming and to a different view
of programming. A number of elegant Prolog programs presented here speak for
themselves. We also noted that the same Prolog program can often be used for
different purposes – for computing, testing or completing a solution, or for com-
puting all solutions. Such programs cannot be easily written in other programming
paradigms. Logical variables are a unique and, as we saw, very useful feature of
logic programming. Additionally, pure Prolog programs have a dual interpretation
as logical formulas. In this sense, Prolog supports declarative programming.

Both through the development of a programming methodology and ingenious
implementations, great care was taken to overcome the possible sources of ineffi-
ciency. On the programming level, we already discussed cut and the difference lists.
Programs such as FACTORIAL of Subsection 15.6.3 can be optimized by means of tail
recursion. On the implementation level, efficiency is improved by such techniques
as the last call optimization that can be used to optimize tail recursion, indexing
that deals with the presence of multiple clauses, and a default omission of the occur-
check (the test “x does not occur in t” in clause (5) of the Martelli–Montanari algo-
rithm) that speeds up the unification process (although on rare occasions makes it
unsound).

Prolog’s only data type, the terms, is implicitly present in many areas of computer
science. In fact, whenever the objects of interest are defined by means of grammars,
for example first-order formulas, digital circuits, programs in any programming lan-
guage, or sentences in some formal language, these objects can be naturally defined
as terms. Prolog programs can then be developed starting with this representation
of the objects as terms. Prolog’s support for handling terms by means of unification
and various term inspection facilities becomes handy. In short, symbolic data can be
naturally handled in Prolog.

The automatic backtracking becomes very useful when dealing with search.
Search is of paramount importance in many artificial intelligence applications and
backtracking itself is most natural when dealing with the NP-complete problems.
Moreover, the principle of “computation as deduction” underlying Prolog’s com-
putation process facilitates formalization of various forms of reasoning in Prolog.
In particular, Prolog’s negation operator not can be naturally used to support
nonmonotonic reasoning. All this explains why Prolog is a natural language for
programming artificial intelligence applications, such as automated theorem provers,
expert systems, and machine learning programs where reasoning needs to be
combined with computing, game playing programs, and various decision support
systems.

Prolog is also an attractive language for computational linguistics applications
and for compiler writing. In fact, Prolog provides support for so-called definite clause
grammars (DCG). Thanks to this, a grammar written in the DCG form is already
a Prolog program that forms a parser for this grammar. The fact that Prolog allows

one to write executable specifications makes it also a useful language for rapid pro-
totyping, in particular in the area of meta-programming.

For the sake of a balanced presentation let us discuss now Prolog’s shortcomings.

504 The Logic Programming Paradigm and Prolog

Lack of Types
Types are used in programming languages to structure the data manipulated by the
program and to ensure its correct use. In Prolog, one can define various types like
binary trees and records. Moreover, the language provides a notation for lists and
offers a limited support for the type of all numbers by means of the arithmetic
operators and arithmetic comparison relations. However, Prolog does not support
types in the sense that it does not check whether the queries use the program in the
intended way.

Because of this absence of type checking, type errors are easy tomake but difficult
to find. For example, even though the APPEND program was meant to be used to
concatenate two lists, it can also be used with nonlists as arguments:

and no error is reported. In fact, almost every Prolog program can be misused.
Moreover, because of lack of type checking some improvements of the efficiency
of the implementation cannot be carried out and various run-time errors cannot be
prevented.

Subtle Arithmetic
We discussed already the subtleties arising in presence of arithmetic in Section 15.6.
We noted that Prolog’s facilities for arithmetic easily lead to run-time errors. It would
be desirable to discover such errors at compile time but this is highly nontrivial.

Idiosyncratic Control
Prolog’s control mechanisms are difficult to master by programmers accustomed
to the imperative programming style. One of the reasons is that both bounded it-
eration (the for statement) and unbounded iteration (the while statement) need to
be implemented by means of the recursion. For example, a nested for statement is
implemented by means of nested tail recursion that is less easy to understand. Of
course, one can introduce both constructs by means of meta-programming, but then
their proper use is not enforced because of the lack of types. Additionally, as already
mentioned, cut is a low-level mechanism that is not easy to understand.

Complex Semantics of Various Built-ins
Prolog offers a large number of built-ins. In fact, the ISO Prolog Standard describes
102 built-ins. Several of themare quite subtle. For example, the querynot(not Q). tests
whether the query Q. succeeds and this test is carried out without changing the state,
i.e., without binding any of the variables.Moreover, it is not easy to describe precisely
the meaning of some of the built-ins. For example, in the ISO Prolog Standard the
operational interpretation of the if-then-else construct consists of 17 steps.

15.10 Chapter Summary 507

No Modules and No Objects
Finally, even though modules exist in many widely used Prolog versions, neither
modules nor objects are present in ISO Prolog Standard.as This makes it difficult to
properly structure Prolog programs and reuse them as components of other Prolog
programs. It should be noted that thanks to Prolog’s support for meta-programming,
the object-programming style can be mimicked in Prolog in a simple way. But no
compile-time checking of its proper use is then enforced then and errors in the
program design will be discovered at best at the run-time. The same critique applies
to Prolog’s approach to higher-order programming and to meta-programming.

Of course, these limitations of Prolog were recognized by many researchers who
came up with various good proposals on how to improve Prolog’s control, how to
add to it (or how to infer) types, and how to provide modules and objects. Research
in the field of logic programming also has dealt with the precise relation between
the procedural and declarative interpretation of logic programs and a declarative
account of various aspects of Prolog, including negation and meta-programming.
Also verification of Prolog programs and its semantics were extensively studied.

However, no single programming language proposal emerged yet that could
be seen as a natural successor to Prolog in which the above shortcomings are
properly solved. The language that comes closest to this ideal is Mercury (see
http://www.cs.mu.oz.au/research/mercury/). Colmerauer designed a series of suc-
cessors of Prolog, Prolog II, III, and IV that incorporated various forms of constraint
processing into this programming style.

When assessing Prolog, it is useful to have in mind that it is a programming
language designed in the early 1970s (and standardized in the 1990s). The fact that
it is still widely used and that new applications for it keep being found testifies to its
originality. No other programming language succeeded to embrace first-order logic
in such an effective way.

15.9 BIBLIOGRAPHIC REMARKS

For those interested in learning more about the origins of logic programming and of
Prolog, the best place to start is Colmerauer andRoussel’s account (TheBirth of Pro-
log, inBergin andGibson,History of ProgrammingLanguages,ACMPress/Addison-
Wesley, 1996, pp. 331–367). There a number of excellent books on programming in
Prolog. The two deservedly most successful are Bratko (PROLOG Programming
for Artificial Intelligence, Addison-Wesley, 2001) and Sterling and Shapiro (The Art
of Prolog, MIT Press, 1994). The work by O’Keefe (The Craft of Prolog, MIT Press,
1990) discusses in depth the efficiency and pragmatics of programming in Prolog. The
work by Aı̈t-Kaci (Warrens’ Abstract Machine, MIT Press, 1991. Out of print. Avail-
able at http://www.isg.sfu.ca/∼hak/documents/wam.html) is an outstanding tutorial
on the implementation of Prolog.

15.10 CHAPTER SUMMARY

We discussed the logic programming paradigm and its realization in Prolog. This
paradigm has contributed a number of novel ideas in the area of programming
languages. It introduced unification as a computation mechanism and it realized the

508 The Logic Programming Paradigm and Prolog

Table 15.1.

Logic Programming Imperative Programming

equation solved by unification assignment
relation symbol procedure identifier
term expression
atom procedure call
query program
definition of a relation procedure declaration
local variable of a rule local variable of a procedure
logic program set of procedure declarations
“,” between atoms sequencing (“;”)
substitution state
composition of substitutions state update

concept of “computation as deduction”. Additionally, it showed that a fragment of
first-order logic can be used as a programming language and that declarative pro-
gramming is an interesting alternative to structured programming in the imperative
programming style.

Prolog is a rule-based language but thanks to a large number of built-ins it is a
general purpose programming language. Programming in Prolog substantially differs
fromprogramming in the imperativeprogramming style.Table 15.1mayhelp to relate
the underlying concepts used in both programming styles.

Acknowledgements

Maarten van Emden and Jan Smaus provided K.R. Apt with useful comments on
this chapter.

