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Abstract: 

This paper investigates the use of fractal 
geometry for segmenting digital signals. A 
method of texture segmentation is introduced 
which is based on the Fractal Dimension. Using 
this approach, variations in texture across a 
signal or image can be characterized in terms of 
variations in the fractal dimension. 
By analyzing the spatial fluctuations in fractal 
dimension obtained using a conventional 
moving window approach, a digital signal or 
image can be texture segmented; this is the 
principle of Fractal Dimension Segmentation 
(FDS). 
In this paper, we apply this form of texture 
segmentation to isolated speech signals. 
An overview of methods for computing the 
fractal dimension is presented focusing on an 
approach that makes use of the characteristic 
Power Density Function (PSDF) of a Random 
Scaling Fractal Signal. 
FDS is applied to a number of different speech 
signals and the results discussed for isolated 
words and the components (e.g. fricatives) from 
which these words are composed. In particular, 
it is shown that by pre-filtering speech signals 
with a low-pass filter of the form lk. 

This provides confidence in the approach to 
speech segmentation considered in this paper 
and in principle, allows a template matching 
scheme to be designed that is based exclusively 
on FDS. 

Introduction: 

Speech recognition introduces a new range of 
communication services that extend man’s 
capabilities, serve his social needs and increase 
his productivity. 
Isolated word recognition for example, is 
adequate for logging freight destinations in 
warehouses or identifying and counting items 
for inventory control. It also requires a short 
pause before and after utterances that are to be 
recognized as entity [l]. In other term the words 
are spoken in isolation. Pauses between words 
simplify recognition because they make it 
relatively easy to identi@ endpoints (i.e., the 
start and end of each word), and they minimize 
co-articulation effects between words. In 
addition, isolated words tend to be pronounced 
somewhat more carehlly, since the need to 
pause between words impedes fluency, which 
would otherwise tend to encourage a more 
natural and hence more careless pronunciation. 
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Techniques of Computing Fractal 
Dimension: 

Phonemes Fractal dimension 
- lzl. 1 . I  

There are many possible ways for computing 
thefractal dimension of speech signals. 
In this paper four methods are used and cited as 
below: 

lo/ 
/ne/ 

The box counting method: 

1.02 
1.01 

Box counting or box dimension is one of the 
most widely used dimensions. Its popularity is 
largely due to its relative ease of mathematical 
calculation and empirical estimation [2]. 
Box counting in general involves covering a 
fractal with a grid of n -dimensional boxes with 
side length Sand counting the number of non- 
empty boxesN(S). If‘ a speech signal with N 
elements (N being a power of 2) is used as input 
signal then the slope p obtained in a 
bilogarithmic plot of the number of boxes used 
against their size gives the fractal dimension D 
[3]. The box counting applied is a regular grid 
where successive divisions by a factor of 2 are 
used for the box size to give a regular spacing in 
the bilogarithmic plot. The fractal dimension is 
determined as follow: 

D =-- N ( 6 )  
S 

Where N(6)  is the number of non-empty boxes 
and 6 the size of the box. 
The word “zone “has been segmented into 
phonemes and the fractal dimension of each 
phoneme has been calculated using this method. 
The results obtained are shown below. 

dimensions between 1 and 1.5 for digital signals 
and between 2 and 2.5 for digital images and are 
easy to code and fast to compute [4]. 

The Continuous Box Counting imethod 
(CBCM): 

It is similar to the box counting method. The 
CBCM looks not only at the points within each 
column along the curve, as the dimension is 
calculated but also to the relationship between 
columns [5]. 
The continuous box counting should give a 
more accurate value for the fractal dimension 
compared with the previous cited method. 
The fiactal dimensions for each phoneme of the 
word “zone “ computed using the CBCM are 
given in table below. 

1.15 
I /ne/ I 1.12 1 

The Line Divider method: 

In this method use of a chord length (step) and 
measures the number of chord lengths (length) 
needed to cover a fractal curve. This technique 
is based on the principle of taking smaller and 
smaller rulers of size step to cover the curve and 
counting the number of rulers length required in 
each case [3]. The process is repeated until there 
are enough points to reasonably find the line of 
the best fit for the relationship: 

Log [total length] Vs Log [Step size] 

The fiactal dimension is then given by: 

D = - ( Log [total length] Vs Log [Step size]) 

The values of D obtained for the phonemes /A, 

In general Box counting algorithms behave well 
and produce accurate estimates for fractal 
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/o/ and /ne/ of the word ”zone” pronounced by a 
male speaker are given in table below. 

Phonemes 
Id. 
Io1 

Inel 1.34 

Fractal dimension 
1.32 
1-09 

The Power Spectrum method (PSM): 

Inel 

The PSM is implemented by applying the FFT 
to the speech signal in order to obtain a spectral 
representation of the phoneme. A pre-filter step 
is then used to adjust the estimated values of the 
fractal dimension to fit within the range 1 and 2. 
The power spectrum of the pre-filtered signal is 
computed and the least square approach is 
applied for the calculation of the power 
exponent f l  and the fractal dimension D of the 
used phoneme. 
The least square method used to calculate the 
spectral exponent p yields to the following 
equation [6] :  

1 .I 

i=l i=l 

where P, is the measured power spectrum of 
the speech signal and ki its spatial frequency. 
The relationship: 

c-  R 

provides a simple formula for computing the 
fiactal dimension fiom the power spectrum of a 
signal [7].  
The results obtained for the same phonemes 
when we used the PSM are shown below. 

What is Texture? 

Texture is a word that is commonly used in a 
variety of contexts but is at best a qualitative 
description of a sensation. Visual texture can be 
associated with a wide range of scenes and 
images but the term cannot be taken to quanti@ 
any particular characteristic. 
Typically one or more ‘measures’ for texture 
can be defined and a moving window (usually 
square) passed over a signal or an image [8]. 

Fractal dimension segmentation: 

Within a predetermined window, the power 
spectrum algorithm has been applied to 
different phonemes of N elements. Then 
moving this window one element at a time over 
the waveform, a set of values for the fractal 
dimension D is obtained as a fimction of the 
window position. The values of D provide a 
characteristic profile of the fractal dimension, 
which, from the definition of fractals should 
vary between 1 and 2 for fractal speech. The 
data can therefore be segmented into regions of 
similarity, which depend on the fractal 
dimension [9]. 
The fractal dimension obtained for the fricative 
If/ as pronounced by a male and a female 
speaker are shown in figure 1. 

4 21 
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Figure 1: Fractal Segmentation 

It is apparent from figure1 that the fractal 
dimensions obtained for the female speaker are 
higher than the male ones, which in term of 
irregularity means that the female speech 
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signals possess a higher irregularity in their 
representation. However they still apply to the 
definition of fractal signals where the values of 
the fractal dimension lie within the range 1 and 
2. 

Random Scaling Fractals: 

A random scaling fractal (RSF) is one that 
exhibits statistical self -affinity [lo]. 
There are many approaches working with 
fractional differentials but they all rely on a 
generalization of results associated with 
differentials of integer order [ l l ,  121. 

The relationship between white noise and fractal 
noise can be considered in term of fractional 
differential and fractional integration and is 
given by the stochastic fractional differential 
(SFD) equation: 

where n(x) is a white Gaussian noise whose 
power density fimction (PSDF) is constant and 
f (x) the fractal noise. This allow the forward 
problem given p find f and the inverse 
problem given f find p associated with fkactal 
signals to be suited in term of stochastic 
fractional differential equation. 

Forward algorithm (given PJind f) 

Stepl: compute a random white Gaussian noise 

Step2: Fourier transform ni to create Ni (w) . 
Step3: Filter in complex space to get 

Step4: Inverse Fourier transform F(w)  to create 

f ( x )  = Re(F-l {F(w)})  . 
The results obtained for different values of /3 
and D are plotted in figure 2. 

nj i E (1,2,3,4 ,...., N ) .  

F(w)  = (iW)+ x Nz (w) . 
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Figure 2: Fractal Signals 

The fractal dimension in general measures the 
degree of irregularity of a signal or image. So 
that, the rougher the texture of an image or the 
shape of a speech waveform is, the higher the 
fractal dimension will be. In fact, figure 2 
confirm that conclusion as the fractal signal for 
D=1.9 looks more irregular that the one for 
which D=l.4. 

Inverse algorithm (given fJind p )  

This algorithm is based on the least square 
method to estimate the value of the spectral 
component p . It uses the following four steps. 
Stepl: Compute the power spectrum of the 
fractal signal. 
Step2: Extract the positive half space data 
(excluding the DC level). 
Step3: Use the least square fit approach to 
estimate the spectral component p (Eq. 1). 
Step4: The relationship p = 5 - 2 0 ,  provides a 
non-iterative formulae for computing the fractal 

dimension from the power spectrum of a signal. 
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The values of the fractal dimension obtained are 
shown in figure 3 where DO is the original (real) 
fractal dimension and D1 the calculated ones. 

2s 1 

0 4  I , . I , , I , , , . , 
1 2  3 4 5 6 7 8 9 1 0 1 1 1 2  

Figure 3: Fractal dimension evaluation 

It can be seen from figure 3 that the two 
dimensions are matching perfectly well. That is, 
the power spectrum algorithm gives a very 
accurate estimation of the fractal dimension for 
random fractals. 

Conclusion: 

The application of the fractal dimension as a 
method of segmenting speech signalslimage 
texture seems to be an adequate approach. 
In fact the use of a moving window for fricative 
component (fig.1) is very useful in the process 
of template creation. 
The RSF model is appropriate to measure the 
fractal dimension of a random white noise and 
the results obtained in this paper (fig. 3) are 
very satisfactory, compared to the real fractal 
dimension values. 
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