YAMR: Yet Another Multipath Routing Protocol

Igor Ganichev
Computer Science Division
Univ. of California, Berkeley

Bin Dai~
School of Computer
National University of

P. Brighten Godfrey
Dept. of Computer Science
Univ. of lllinois at

igor@cs.berkeley.edu Defense Technology, China Urbana-Champaign
bin.danieldai@gmail.com pbg@illinois.edu
Scott Shenker
UCB & ICSI
shenker@icsi.berkeley.edu
ABSTRACT The only disquieting aspect of these approaches (and many

Multipath routing is a promising technique to increase the
Internet’s reliability and to give users greater control over
the service they receive. However, past proposals choose
paths which are not guaranteed to have high diversity. In
this paper, we propose yet another multipath routing scheme
(YAMR) for the interdomain case. YAMR provably con-
structs a set of paths that is resilient to any one inter-domain
link failure, thus achieving high reliability in a systematic
way. Further, even though YAMR maintains more paths
than BGP, it actually requires significantly less control traf-
fic, thus alleviating instead of worsening one of the Internet’s
scalability problems. This reduction in churn is achieved by
a novel hiding technique that automatically localizes failures
leaving the greater part of the Internet completely oblivious.

Categories and Subject Descriptors

C.2.2 [Computer-Communication Networks]: Network
Protocols— Routing protocols

General Terms
Algorithms, Design, Performance, Reliability

Keywords
Routing Protocols, Reliability, Internet

1. INTRODUCTION

In recent years, a growing chorus of researchers have ad-
vocated the multipath routing paradigm, in which the rout-
ing infrastructure makes multiple paths available, allowing
senders to select among them. This approach gives users
access to the paths that best suit their needs (low latency,
high bandwidth, low loss, low jitter), thereby improving re-
liability and increasing competition among ISPs ([15], [3]).
It is hard enough to design multipath routing algorithms
for the intradomain case, but the interdomain case is even
more challenging because of policy constraints and scaling
requirements. There have been several proposals for inter-
domain multipath routing (see, for example, [14, 12]), and
they have made admirable progress in grappling with these
two issues; to wit, they have demonstrated that it is possible
to provide a set of alternate interdomain paths in a scalable
and policy-compliant manner.

* Author was supported by Major State Basic Research Develop-
ment Programs of China: No.2009CB320503

ACM SIGCOMM Computer Communication Review

14

other multipath proposals in the intradomain case) is that
the set of alternate paths is somewhat ad hoc; they cannot
systematically compute a set of alternate paths that have
a high degree of path diversity.! That is, while they pro-
vide a tunable number of alternate paths, these paths may
have significant overlap, thereby leaving the possibility that
a single failure could take out the entire set.

In this paper we present the Yet Another Multipath Rout-
ing (YAMR) protocol that systematically provides high path
diversity. There are two components to YAMR.

(1) An efficient BGP-like mechanism for comput-
ing a diverse family of policy-compliant paths: This
component of YAMR (which we call YAMR Path Construc-
tion, or YPC) computes a set of alternate paths that are
deviations from BGP’s default path.? Each alternate path
is computed assuming that a link in the default path is down.
Considered as a static set of paths, there is no single failure
that can break all the paths simultaneously, unless that fail-
ure disrupts all policy-compliant paths between the source
and receiver. When protocol dynamics are taken into ac-
count, the story is more complicated (because when BGP
recovers from a link failure, it can break paths that did not
contain the failed link). We present simulation results on the
actual resilience achieved under full dynamics, which show
that YAMR improves the reliability of BGP in single link
failures by almost three orders of magnitude.

However, computing this family of paths involves higher
control plane messaging overhead than BGP. We therefore
added another component to YAMR.

(2) A technique for reducing churn by localizing
routing updates: Much of the churn created by BGP is
due to the fact that every change in a path must be dis-
seminated to all nodes that use that path. YAMR hides
some of these updates, and it turns out that this “update
hiding” technique not only reduces YAMR’s churn, it also
increases (by an order of magnitude) YAMR’s resilience, by
largely avoiding BGP’s problem of recovery causing func-
tioning paths to break.

The rest of the paper is organized as follows. In Section
2 we present the YAMR Path Construction algorithm and,

!The theory literature has many such algorithms, but they
do not lend themselves to scalable, policy-compliant imple-
mentation.

2This idea is borrowed from [5], which computes the cost of
the cheapest path that avoids each link on shortest path.

Volume 40, Number 5, October 2010

in Section 3, we present the hiding technique. We describe
simulation results in Section 4 and conclude in section 5.

2. YAMR PATH CONSTRUCTION

The core of YAMR is a policy-based multipath construc-
tion mechanism that is very similar to BGP. Paths are de-
scribed by a series of ASes, such as [A, B, C, D]; this also
defines a series of interdomain links, such as (A, B), (B, C),
and (C, D) in the preceding example. For convenience, we
use a failure model where these links are the unit of failure.
We can easily generalize the algorithm to cover both link fail-
ures and domain failures (where all links (*, A) and (A, *)
fail for some A), but our notation is cumbersome enough as
is, so we opt for clarity over generality in this short paper.

The goal of YPC is to compute a default path pg (that is
identical to what BGP would compute) and for each link L in
pa also compute (if one exists) a policy-compliant alternate
path pr that does not contain L. It turns out that we can
only guarantee this under a set of restrictive conditions.

We say that the network is in a canonical condition when
the network has converged, all ASes follow nezt-hop [6] and
widest-advertisement [10] policies (these policies include the
customer-peer-provider policy [8]), and there are no dispute
wheels [9]. Under these conditions, we can show (see [7] for
proofs of all theorems in this paper):

THEOREM 1. Assuming the canonical condition, for any
destination D, AS A, and interdomain link e, if there is
a policy-compliant path from A to D that avoids e, then
YPC computes a policy-compliant e-avoiding path to that
destination.

We need the aforementioned assumptions for the follow-
ing reasons. Without the “no dispute wheels” assumption,
BGP and YPC can oscillate forever and we cannot talk
about the converged state of the network. Without the
widest-advertisement assumption, one cannot make guaran-
tees about path availability. In fact, without this assump-
tion, even when there is a policy-compliant path from some
AS to some destination, BGP can leave this AS disconnected
(see [7]). Thus, we need these two assumptions because of
BGP properties that our protocols inherit, not because our
protocols introduce new restrictions. The last assumption
of next-hop policies is needed mainly to talk about policy-
compliance in the context of our hiding technique.

We now describe YPC in more detail, starting with the
control plane and then moving to the data plane.

2.1 Control Plane

Similar to BGP, ASes in YAMR construct their default
and alternate paths from the paths advertised by their neigh-
bors, applying local policies, import and export filters and
actions. These multiple paths to the same destination are
differentiated using labels. Default paths have a special label
which we denote by d, while alternate paths are labeled by
the link they avoid.

Within this framework, YAMR achieves Theorem 1 by se-
lecting paths as described in Procedure 1, where pr, denotes
an L-labeled path, besta(U) denotes the A’s most preferred
path from the set U, UL denotes the set of L-labeled paths
A knows from its neighbors, and UZ denotes the set of de-
fault paths A knows that avoid link L. AS A first selects its
default path from the default paths it knows from its neigh-
bors. Because default paths are selected only from default

ACM SIGCOMM Computer Communication Review

15

paths, the default paths in YAMR are exactly the same as
in BGP. Then, for each interdomain link L on the default
path, A selects an L-labeled alternate path from the set of
default paths avoiding L and alternate L-labeled paths. To
clarify terms, we use RIB_IN to describe the set of routes
learned from neighbors and RIB_.LOCAL to describe the set
of routes used for forwarding.

Procedure 1: YPC path selection run by AS A.

/* select the default path */

pa = best a(Uq)

foreach link L in ps do
/* select the L-labeled alternate path */
pr = bestA(UF UUL)

end

We now walk through a complete run of YPC shown in
Figure 1. First, C' announces its default path [C] to its
neighbors, which then construct their default paths. None
of the neighbors is able to construct an alternate path yet.
Next, B and D send their default paths to each other. Upon
processing these messages each is able to construct the al-
ternate path it needs. Next, B and E send to A the updates
to their RIB.LOCALs. A can construct its default paths
either from [B,C|] or [E,C]. A prefers to have [A, B,C] as
its default path and now needs to construct alternate paths
avoiding links (A, B) and (B,C). For the (A, B)-avoiding
path A has the path [A, E, C] as the only choice because the
path [A, B, C] goes through (A, B) and the path [A, B, D, C]
cannot be considered because of its label (and would be un-
suitable anyway, since it does not avoid (A, B)). Finally, A
sends updates to its RIBLLOCAL to E, which is now able
to pick its alternate path.

Using techniques borrowed from the classic proof for BGP
([9]), we can show:

THEOREM 2. If there are no dispute wheels, YPC' always
converges to a unique final configuration that has no loops.

2.2 Data plane

YAMR requires a single addition to the IP header: a 32-
bit field for the path label. A packet arriving at AS A des-
tined to D with label L is forwarded along the L-labeled
path towards D if A has such a path in its RIB_.LOCAL.
Otherwise, the packet is forwarded along the default path
towards D (without overwriting the label). If A does not
have a default path towards D, the packet is dropped. Once
the control plane has converged, this algorithm is guaran-
teed to produce no loops.

For each destination, a YAMR router needs to have a
forwarding entry for the default path and for each alternate
path whose next-hop is different from the next-hop of the
default path. Thus, the state requirements of YAMR are
roughly 1 4+ k£ times that of BGP, where k is the average
interdomain path length. Recent measurements suggest that
this is around 3.6 [2].

2.3 Discussion

As Theorem 1 shows, YPC is guaranteed to give each AS
a policy-compliant path that avoids any given interdomain
link (if such a path exists), thus greatly improving reliability.
Moreover, users can use all of the paths simply by inserting

Volume 40, Number 5, October 2010

Messages A B
C->D: (0,0):[C]

C->B: (0,0):[C] none (0,0):[B,C]
C->E: (0,0):[C]
D->B: (0,0):[D,C] none (0,0):[B,C]

B->D: (0,0):[B,C]

B->A: (0,0):[B,C],
(B,C):[B,D,C]

E->A: (0,0):[E,C]

(0,0):[A,B,C]
(A,B):[AEC]
(B,C):[A,B,D,C]
A->E: (0,0):[A,B,C],

(A,B):[AE,C],
(B,C):[A,B,D,C]

(0,0):[A,B,C]
(A/B):[AEC]
(B,C):[A,B,D,C]

(B,C):[B,D,C]
(0,0):[B,C]
(B,C):[B,D,C]

(0,0):[B,C]
(B,C):[B,D,C]

This figure presents a simple run of YPC on the topology shown on the left. AS C announces a single
prefix and other ASes build their paths to this prefix. In the table below, the first column shows the
messages sent by the protocol. The other five columns show the state of the routing tables after all
the messages in the first column have been processed. Messages are denoted by “src->dst : msg”,
where msg contains a number of paths. Each path is denoted by “label: AS-path”. In this figure, we
denote the default path label by (0,0). Messages that don't result in changes to the routing tables are
omitted. Also, note that we picked a particular order of the messages. If another order were picked,
intermediate routing tables would have been different.

C D E
local path (0,0):[D,C] (0,0):[E,C]
local path (0,0):[D,C] (0,0):[E,C]
(C,D):[D,B,C]
local path (0,0):[D,C] (0,0):[E,C]
(C,D):[D,B,C]
local path (0,0):[D,C] (0,0):[E,C]

(C,D):[D,B,C] (C,E):[E,AB,C]

Figure 1: A complete run of YPC on a simple topology.

the appropriate path label into their packets. (The default
path lists all the AS links, and so the edge will know which
labels will produce different paths; YAMR does not include
mechanisms to tell the edge which of these AS links might
be providing subpar service.) The paths are constructed
and made available to users with moderate increases in the
control messaging (or churn) as we will see in Section 4, and
in RIB and FIB sizes.

An alternate approach would be to construct a single “op-
timally disjoint” path. However, we were not able to prove
that such a path is always policy compliant (or conversely,
that any policy-compliant alternate path is sufficiently dis-
joint so that Theorem 1 would hold).

BGP scalability is considered a critical challenge [11] and
YPC makes it worse. Among the many dimensions of scala-
bility, churn appears to be the most intractable. Indeed, the
comparison of technology trends and projected growth of
RIB and FIB sizes in [1] suggests that technology advances
are expected to satisfy RIB and FIB memory requirements
at a constant cost. We now present a method that reduces
YAMR’s churn below that of BGP. This churn reduction
method involves hiding path withdrawals, leaving most of
the Internet completely oblivious to the failure.

3. HIDING ROUTE UPDATES

YAMR’s hiding technique is a set of distributed mecha-
nisms that can be applied to either YPC or BGP to con-
fine the effects of a link failure to a small neighborhood
around the link. Hiding ASes do not propagate information
about the failure to their neighbors if they can safely reroute
around it. For example, in Figure 1, if link (B, C) fails, B
can reroute around this failure by deflecting all traffic onto
[B, D, C] without telling A that path [B, C] has failed. We
call B a hiding AS, path [B, D, C] a deflection path, and
path [B, C] (the failed path being hidden) a lame path.

ACM SIGCOMM Computer Communication Review

16

F

ASes hiding failure

of link (A,B) ASes oblivious to
J & both failures

H

ASes hiding both—" = \

failures B, B ASes hiding
: \ failure of link (C,E)

A ©
Destination AS—___ ", & 1

™ Failed Links

Figure 2: An illustration of hiding bubbles.

In the example above, B is able to completely hide the
failure so that all other ASes remain oblivious to it. How-
ever, in general topologies and policies, B might be able
to hide the failure only from a subset of its neighbors, but
can’t hide it from others because it doesn’t have a suitable
path it can export to them. In such a case, B withdraws
the failed path from the neighbors for whom it can’t hide
the failure. These neighbors then try to hide the failure from
their neighbors, recursively. This process continues until the
failure is completely hidden. In other words, a single fail-
ure is hidden by a dynamically determined bubble of hiding
ASes (see Figure 2).

Hiding is easy: just pretend a withdrawn path is avail-
able. Hiding without creating loops and without damaging
connectivity is hard. We don’t give the full details of the
hiding mechanism here as that would distract the focus of
the paper (see [7] for details). Instead, we first state the
guarantees our mechanism provides (see [7] for proofs), and
then give a high level overview of the design. We can show
that when hiding is combined with YPC to produce the full
YAMR protocol, the following results hold:

Volume 40, Number 5, October 2010

Procedure 2: YAMR default path selection.

while Uy is non-empty do
pa 1= besta(Uq)
if pg is lame then
pa.defl := best_non_lamea()
if pq.defl is null then
delete pg from RIB_IN
continue
end
end

break
end

THEOREM 3. If there are no dispute wheels, YAMR al-
ways converges.

THEOREM 4. In the converged state, YAMR has no for-
warding loops or dead ends. Moreover, if ASes follow next-
hop policies, all forwarding paths are policy-compliant.

THEOREM 5. Assuming canonical conditions, for each AS
A, if there is a policy-compliant path from A to the desti-
nation, A has a policy-compliant path to the destination in
YAMR.

THEOREM 6. When a failed link recovers, all hiding caused
by it stops and routing returns to normal.

We now present three hiding mechanisms, each of which was
introduced to solve a particular problem.

Hiding Path Selection The fundamental mechanism
of hiding is to pretend that a withdrawn path is available.
When a path currently in the AS A’s RIB_IN is withdrawn,
A does not delete it from the RIB_IN as it would in BGP.
Instead, A marks the path as lame and calls path selection.
In path selection, if A selects a lame path, it tries to choose
a deflection path (from among the set of other default and
alternate paths) for it. If there is no suitable deflection path,
the lame path is deleted from the RIB_IN and no hiding oc-
curs. YAMR'’s selection of the default path is presented in
Procedure 2. Alternate paths are selected analogously.

After path selection, each lame path in the RIB_.LOCAL
has a deflection path associated with it. As in BGP, af-
ter the RIB_.LOCAL has been updated, YAMR announces
the changes to its neighbors. Export filters and actions are
applied to non-lame paths in the same way as in BGP. How-
ever, for lame paths, export filters are applied to the corre-
sponding deflection paths and export actions are applied to
the lame paths. If export filters allow the deflection path
to be advertised to a neighbor, the lame path is actually
advertised. Otherwise, a withdrawal is sent to the neighbor.

In YAMR, withdrawal messages also include the failed
link(s), if any, that caused the withdrawal. This failed
link information gives the receiving AS “permission” to hide
the withdrawal. Withdrawals caused by permanent changes
(e.g., a policy change or a prefix withdrawal) don’t include
the failure information, and are therefore not hidden. When
the failure recovers, all failure information is revoked caus-
ing all ASes to stop hiding and to return to regular routing.

Hiding Forwarding Forwarding in YAMR is the same as
in YPC except that the forwarding entries for lame paths
are built based on the corresponding deflection paths. If the
lame path’s label is different from the deflection path’s label,
the labels of packets forwarded along the deflection path are
replaced by the deflection path’s label.

ACM SIGCOMM Computer Communication Review

17

Tokens In the two previous sections, we described that
YAMR advertises lame paths, but forwards on deflection
paths. When multiple ASes are hiding multiple failures, the
“lies” being told by the ASes might result in forwarding
loops or leave an AS unnecessarily disconnected. These two
problems are solved by introducing a new control message
we call a token.

The goal of tokens is to determine if there is a problem
(either loop or disconnection) and, if so, signal to one of the
hiding ASes to stop hiding. A “loop” token is sent whenever
a deflection path is installed into RIB_.LOCAL. The loop
token is sent along this deflection path and, as forwarded,
it records all the ASes along the path. If it ever arrives
at a hiding AS a second time, that AS stops hiding. A
“disconnection” token is sent when an AS finds out that all
available routes appear loopy (include itself in the path).
The token is sent along one of these paths and causes the
first encountered hiding AS to stop hiding.

The token mechanism is designed to be safe, but not nec-
essarily optimal. In other words, tokens will always find
and fix a problem if there is one, but they can be overly-
cautious, causing more ASes to stop hiding than needed. We
believe (but cannot prove) there is a fundamental trade-off
between the optimality of the hiding bubble and the over-
head of achieving it. Tokens have low overhead, but can
produce sub-optimal bubbles.

3.1 Discussion

Recalling the high level picture, YPC is able to effeciently
construct a set of paths with provable static diversity, but
incurs higher messaging overhead than BGP. To decrease
the overhead, we developed a hiding technique that, as we
will see in the next section, brings the churn level of YAMR
below that of BGP. The surprising result, again to be dis-
cussed in the next section, is that hiding also substantially
improves resilience. Hiding localizes the impact of any rout-
ing update, and decreases the chance that the convergence
process will interfere with any functioning paths.

However, hiding deprives YAMR, of some of YPC’s valu-
able properties. First, the set of YAMR paths might not be
one-failure resistant because the set of paths might already
be hiding failures. Second, YAMR’s advertised paths can be
different from the forwarding paths. Because ASes cannot
be sure about the paths beyond the first hop, they cannot
implement policies beyond next-hop policies with 100% con-
fidence. Furthermore, this inconsistency between the con-
trol and data planes can adversely affect routing-dependent
systems such as distributed spam detection. We did not
evaluate this potential negative impact here; we don’t know
how often there is a mismatch between the control and data
planes, nor how seriously such a mismatch affects various
routing-dependent systems. The question is whether the
benefits (described in the next section) of YAMR’s increased
resilience and substantially lower churn compared with YPC
are worth these two disadvantages.

4. EVALUATION

Recall that YAMR is composed of the path construction
algorithm YPC and a hiding technique. This hiding tech-
nique can be applied to BGP, forming what we call HBGP.
To understand the contributions of these components to var-
ious metrics, we run each experiment for all four protocols:
BGP, HBGP, YPC, and YAMR.

Volume 40, Number 5, October 2010

10 (':'h.urn CDFs 1.0 Churn CDFs including tokens” .
Figure 3: CDFs of number &
of messages following a link o8 08
event (either failure or re- s =
covery). On the left side, EO'G §°-6
only update messages are 5 5
included. On the right side, £04 S04,
all messages are included. £ : — YAMR £ i — YAMR
The averages are BGP: 829, o S S :(B;SP o S e :z‘:P
YPC: 1828, HBGP: 178 and S Ype g vre
249, YAMR: 134 and 286. 0-05""555 1600 1500 2000 7500 3000 3500 4000 4500 0-05~" 5501600 1500 2000 2500 3000 3500 4000 4500
Number of Messages Number of Messages
BGP | HBGP | YPC | YAMR multipath routing proposals [16, 14, 12] were done with dif-
Disconnectivity 9.05 8.43 0.12 0.01 ferent methodologies, we have not yet been able to accu-
Convergence Time | 23.8 16.7 44.9 1.16 rately compare YAMR’s reliability with them; however, we

Table 1: Average percentage of ASes experiencing
transient disconnectivity (top row) and average con-
vergence time in seconds (bottom row) following a
single link failure in a 1000 node topology.

4.1 Methodology

We implemented a message-level event driven simulator
that includes important features like MRAIT timers (with av-
erage value of 30 seconds), router processing delay, and mes-
sage propagation delay. For simplicity, we represent each AS
as a single router. We used annotated Internet-like topolo-
gies generated using [4].

Our basic experiment is the following. Given a topology
and a multihomed stub AS, we make the AS announce a
prefix, let the network converge, fail one of the provider
links from this AS, and let the network reconverge. This
basic experiment is repeated for all multihomed stub ASes
and all of their provider links. We use a 1000 node topology
for most metrics. To study scalability, we use topologies of
sizes from 500 to 5000 in increments of 500.

We selected this initial experiment, which focuses on fail-
ures close to the edge, because internal failures are substan-
tially less common and more amenable to recovery, even
in BGP. Thus, these edge failures are the most interesting
case, and are the dominant case in reality. We also note that
this simulation is similar to the live deployment experiment
of [13]. Our future work will study a broader class of failure
models.

4.2 Results

We present and discuss our simulation results for reliabil-
ity, churn, path stretch, and forwarding table size.

Reliability Table 1 shows the average number of ASes
that experience any disconnectivity during the convergence
process. We consider an AS to experience disconnectivity
if there is ever a moment when none of the paths in its
forwarding table are working. The table shows YAMR is
almost 1000 times more resilient than BGP. The table also
includes the average convergence time. Note that YAMR
converges more than 20 times faster than BGP, because of
failure localization. In both cases, the hiding aspect helps
YPC far more than BGP. Presumably this is because YPC
provides many more potential deflection paths than BGP.

Because the simulation evaluations of other interdomain

ACM SIGCOMM Computer Communication Review

18

can give a very rough comparison of YAMR to path splicing
[12] 3. Recall that static reliability means that a routing pro-
tocol, at the time of the failure, has an alternate path that
avoids the failure. This is an easier quantity to measure than
what we studied in our dynamic simulations, but it ignores
the fact that when a routing protocol is converging to route
around the failure, it can disrupt this functioning alternate
path. Nonetheless, it does provide some measure of reliabil-
ity. Eyeballing Figure 7 in [12], we see that path splicing is
able to improve static BGP reliability by about a factor of 15
with 5 forwarding entries per router per destination (that is,
there are 15 times more unnecessary disconnections in BGP
than there are in path splicing). YAMR, on the other hand,
has no unnecessary disconnections when a single link fails,
and even in our dynamic simulations which allow routing
recovery to disrupt these alternate paths, it has almost 1000
times fewer unnecessary disconnections than BGP.

R-BGP [10] is another promising approach, achieving both
perfect static and dynamic reliability when a single link fails.
However, it is not a canonical multipath algorithm because
it does not make multiple paths available to the users; it
only invokes them upon network-detected failure. It also
does not have perfect policy compliance.

Churn Figure 3 shows the CDFs of the number of mes-
sages following a link event. We present two graphs with and
without tokens because token processing is a much lighter
operation than update message processing and because sep-
arating them shows how many updates hiding saved and
how much extra communication it introduced.

In both graphs, YAMR and HBGP significantly outper-
form YPC and BGP, reinforcing the conclusion that hiding
is effective in reducing the messaging overhead. If tokens are
ignored, YAMR reduces the message overhead by a factor
of 6.2 compared to BGP, and by a factor of 2.9 if tokens are
counted despite the fact that YAMR constructs more paths.

Note that compared to the protocols without hiding (BGP
and YPC), the protocols with hiding (HBGP and YAMR)
perform relatively better in the lower percentiles than in the
higher percentiles. For example, at 20" percentile, YAMR
has only 5 messages while BGP has 388 messages. For every
failure, BGP requires many messages to converge. YAMR,

3Path splicing constructs multiple paths by running the
original routing protocol on several different instantiations
(slices) of the underlying topology. For instance, these slices
could have modified link weights, so each slice gave a differ-
ent set of paths.

Volume 40, Number 5, October 2010

Scaling of Churn, All Events

Scaling of Churn, Lower Half of Events

1400 9000
Figure 4: Average num- mYPC i YPC
12000 | *** BGP 8000f| 4y BGP
ber of messages followin 8 &
g g =y wn HBGP @ 7000 | """ HBGP
a link event (either failure 2 100001 == YAMR 4 m— YAMR
6000
or recovery) versus topol- z :
. . 8000
ogy size. On the left side, § gsooo
all link events are included. E 6000 £ 4000
. . =z S .
On the right side, only half) @ 3000
. 8 4000 o I o
of the events with lowest g § 2000 RCLLULLLE
3 < S . 3 & wunt®
number of messages are in- 20000 . Tl 1000k ““"_‘_,..---"“
cluded, separately for each parery hawsnns®®

protocol.

in contrast, is more bimodal: when the failure occurs in a
richly connected portion of the network, it recovers with very
few messages, but if connectivity is sparse then recovery is
expensive (sometimes more so than BGP). Exploring this
bimodal distribution, Figure 4 demonstrates that the size of
the smaller convergence events are independent of network
size, but the average size of all convergence events grows
linearly with network size.

Path Stretch After each of our basic experiments with
a single provider link failure, we measured the average path
stretch for all 3 protocols and found that the average path
stretch was negligible. For example, the average path stretch
of YAMR was only 1.02. The reason is that in the Internet-
like topologies, it is almost always possible to find an alter-
nate path that has the same length as the shortest path.

Forwarding Table Let F' be the average number of for-
warding entries per router per destination. As noted in Sec-
tion 2.2, the pessimal F'is 1+ k, where k is the average path
length, and this occurs when every alternate path is dif-
ferent. In our 1000 node topology the average path length
is 2.86, so the pessimal F' is 3.86, but in our simulations
F = 2.21, 43% less than the pessimal value. If this holds for
the Internet, F' for the Internet would be roughly 2.62.

4.3 Incremental Deployability

The only portion of YAMR that is not easy to deploy
incrementally is the token mechanism. Beside the tokens,
YAMR is incrementally deployable using an approach very
similar to [12]. In the data plane, YAMR’s label can be
placed in a shim header between the IP and the transport
headers so that routers unaware of YAMR can forward pack-
ets using just the IP address. In the control plane, YAMR
can be implemented as a different version of BGP. A YAMR-
aware AS A can ask the neighboring AS what version of BGP
it speaks. If the version is non-YAMR, A sends over only
the default paths and interprets the incoming ones as such.

The hiding mechanism does not need any modifications
to accommodate non-participating ASes because, by design,
any AS is free to stop hiding at any time. From the hiding
perspective, a non-participating AS is indistinguishable from
an AS that knows about hiding, but decides not to hide.

The problem with incrementally deploying tokens is that a
non-YAMR AS will not forward them along the path. A pos-
sible solution for a YAMR-aware AS A with a non-YAMR
neighbor B is to ask the AS after B if it is YAMR-aware.
If so, A can forward tokens directly to the latter AS. Oth-
erwise, A can continue asking until it finds the first YAMR-
aware AS along the path or the path ends. A detailed design
and evaluation of such a mechanism is left for future work.

ACM SIGCOMM Computer Communication Review

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Topology Size

19

&)0 1000 1500 2000 2500 3000 3500 4000 4500 5000
Topology Size

5. CONCLUSION

In this paper, we presented an efficient mechanism, YPC,
to systematically construct a set of paths that is resilient
to any one link failure. Because YPC manages more paths
than BGP, it has a higher churn and a longer convergence
time. However, when YPC is combined with the hiding
technique, churn and convergence time fall well below the
BGP levels. In our trials, YAMR increased the reliability
by almost three orders of magnitude. This improvement is
due to the carefully selected alternative paths as well as to
the faster convergence realized by the hiding technique. We
applied the hiding technique in the context of BGP, but we
hope that it will be of independent interest because it is
applicable to path-vector routing in general.

6. REFERENCES

[1] D. G. Andersen, H. Balakrishnan, N. Feamster, T. Koponen,
D. Moon, and S. Shenker. Accountable internet protocol (AIP).
In SIGCOMM, pages 339-350, 2008.

Routing table report.

http://thyme.apnic.net/ap-data/2009/07/23/0400/mail-global.

[3] D. D. Clark, J. Wroclawski, K. R. Sollins, and R. Braden.
Tussle in cyberspace: defining tomorrow’s internet.
IEEE/ACM Trans. Netw., 13(3):462-475, 2005.

[4] X. Dimitropoulos, D. Krioukov, A. Vahat, and G. Riley. Graph
annotations in modeling complex network topologies. In NSDI,
August 2007.

[5] J. Feigenbaum, C. H. Papadimitriou, R. Sami, and S. Shenker.
A BGP-based mechanism for lowest-cost routing. Distributed
Computing, 18(1):61-72, 2005.

[6] J. Feigenbaum, R. Sami, and S. Shenker. Mechanism design for
policy routing. Distributed Computing, 18(4):293-305, 2006.

[7] 1. Ganichev, B. Dai, P. B. Godfrey, and S. Shenker. Yamr: Yet
another multipath routing protocol. Technical Report
UCB/EECS-2009-150, EECS Dept, UC, Berkeley, Oct 2009.

[8] L. Gao and J. Rexford. Stable internet routing without global
coordination. In SIGMETRICS, pages 307-317, 2000.

[9] T. Griffin, F. B. Shepherd, and G. T. Wilfong. The stable

paths problem and interdomain routing. IEEE/ACM Trans.

Netw., 10(2):232-243, 2002.

N. Kushman, S. Kandula, D. Katabi, and B. M. Maggs.

R-BGP: Staying connected in a connected world. In NSDI,

2007.

D. Meyer, L. Zhang, and K. Fall. Report from the IAB

Workshop on Routing and Addressing. RFC 4984.

M. Motiwala, M. Elmore, N. Feamster, and S. Vempala. Path

splicing. In SIGCOMM, pages 27-38, 2008.

F. Wang, Z. M. Mao, J. Wang, L. Gao, and R. Bush. A

measurement study on the impact of routing events on

end-to-end Internet path performance. In SIGCOMM, 2006.

W. Xu and J. Rexford. Miro: multi-path interdomain routing.

In SIGCOMM, pages 171-182, 2006.

X. Yang, D. Clark, and A. W. Berger. Nira: a new inter-domain

routing architecture. Trans. Netw., 15(4):775-788, 2007.

X. Yang and D. Wetherall. Source selectable path diversity via

routing deflections. In SIGCOMM, pages 159-170, 2006.

[2

[10]

(11]
(12]

(13]

(14]
(15]

(16]

Volume 40, Number 5, October 2010

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

