پایان نامه بررسی و مقایسه چهار طرح ضرب کننده RNS

مقدمه

همانطور که می دانیم ضرب پیمانه ای در علم رمزنگاری نقش مهمی ایفا می کند. از جمله روشهای رمزنگاری که به ضرب کننده پیمانه ای سریع نیاز دارد، روش رمزنگاری RSA می باشد که در آن نیاز به توان رساندن اعداد بزرگ در پیمانه های بزرگ می باشد. معمولاً برای نمایش اعداد در این حالات از سیستم باقی مانده (RNS) استفاده می شود و ضرب (به عنوان هسته توان رسانی) در این سیستم به کار می رود.

در اینجا برای آشنایی بیشتر به توضیح سیستم عددی باقی مانده می پردازیم و به کاربردها و فواید آن اشاراتی خواهیم داشت.

سیستم عددی باقیمانده (Residue Number System)

در حدود 1500 سال پیش معمایی به صورت شعر توسط یک شاعر چینی به صورت زیر بیان شد. «آن چه عددی است که وقتی بر اعداد 3، 5و7 تقسیم می شود باقیمانده های 2، 3و2 بدست می آید؟» این معما یکی از قدیمی ترین نمونه های سیستم عددی باقی مانده است. در RNS یک عدد توسط لیستی از باقیمانده هایش برn عدد صحیح مثبت m1 تا mn که این اعداد دو به دو نسبت به هم اولند (یعنی بزرگترین مقسوم علیه مشترک دوبدوشان یک است) به نمایش در می آید. به اعداد m1 تا mn پیمانه (moduli)

می گویند. حاصلضرب این nعدد، تعداد اعدادی که می توان با این پیمانه ها نشان داد را بیان می کند. هر باقیمانده xi را به صورت xi=Xmod mi نمایش می دهند. در مثال بالا عدد مربوطه به صورت X=(2/3/2)RNS(7/5/3) به نمایش در می آید که X mod7=2 و X mod5=3 و X mod3=2. تعداد اعداد قابل نمایش در این مثال می باشد. می توان هرمجموعه 105 تایی از اعداد صحیح مثبت یا منفی متوالی را با این سیستم عددی باقیمانده نمایش داد. اثبات این که هر عدد صحیح موجود در محدوده، نمایش منحصر به فردی در این سیستم دارد به کمک قضیه باقی مانده های چینی(Chinese Remainder Theorem (CRT)) امکان پذیر است.

اطلاعات فایل

  • فرمت: zip
  • حجم: 0.96 مگابایت
  • شماره ثبت: 505

خرید فایل

نظرات 0 + ارسال نظر
امکان ثبت نظر جدید برای این مطلب وجود ندارد.