با افزایش سیستمهای کامپیوتر و گسترش تکنولوژی اطلاعات، بحث اصلی در علم کامپیوتر از چگونگی جمع آوری اطلاعات به نحوه استفاده از اطلاعات منتقل شده است. سیستمهای داده کاوی، این امکان را به کاربر می دهند که بتواند انبوه داده های جمع آوری شده را تفسیر کنند و دانش نهفته در آن را استخراج نمایند. داده کاوی به هر نوع کشف دانش و یا الگوی پنهان در پایگاه داده ها اطلاق می شود. امروزه داده کاوی به عنوان یکی از مهمترین مسائل هوش مصنوعی و پایگاه داده، محققان بسیاری را به خود جذب کرده است. در این تحقیق ابتدا نگاه کلی بر داده کاوی، استراتژی های داده کاوی و … داریم، سپس مسأله کشف قوانین وابستگی در پایگاه داده را به تفضیل بررسی کردیم و نگاهی به الگوریتم های موجود برای آن داشتیم. سپس مسأله کشف قوانین وابستگی در پایگاه داده های پویا را مورد بحث قرار دادیم و الگوریتم های ارائه شده مربوطه را مطرح کردیم.
چکیده
مقدمه
کشف دانش در پایگاه داده
آیا داده کاوی برای حل مسائل ما مناسب است؟
جمع آوری داده ها
بکارگیری نتایج
استراتژیهای داده کاوی
پیش گویی Perdiction
Unsupervised Clustering دسته بندی بدون کنترل
تکنیکهای داده کاوی تحت کنترل
شبکه عصبی
برگشت آماری
قوانین وابستگی
الگوریتم Apriori
الگوریتم Aprior TID
الگوریتم partition
الگوریتم های MaxEclat,Eclat
الگوریتم با ساختار trie
الگوریتم fp-grow
ساخت fp- tree
Fp-tree شرطی
الگوریتم برداری
نگهداری قوانین وابستگی
الگوریتم کاهشی